Genetic alterations in azoospermia patients may reveal potential biomarkers for male infertility: A bioinformatic study
Identification of genetic alterations in azoospermia
Keywords:
male infertility, azoospermia, bioinformatic analysis, GEO, microarrayAbstract
Background/Aim: Azoospermia is defined as the absence of sperm in semen and is one of the most common causes of male infertility, with a prevalence of 10-15% in infertile men. Conventional methods for semen analysis do not provide a clear understanding of the etiology of azoospermia. Although testicular biopsy may exclude obstructive cases, non-obstructive azoospermia (NOA) treatment is limited due to a limited understanding of the underlying molecular mechanisms. Analysis of genetic alterations in azoospermia patients compared to the fertile population may be a valuable tool for determining diagnostic biomarkers for male infertility. This study aims to use bioinformatic tools to determine the top candidates in certain pathways altered in azoospermia.
Methods: Expression data (GSE108886) of the differential testicular transcriptome in patients with NOA was selected from the Gene Expression Omnibus (GEO) database. Testicular RNA was harvested from azoospermia patients (n=11) and healthy controls (n=1, pooled sample). The differentially expressed genes (DEGs) were examined using GEO2R software. Biological pathways were identified through the Kyoto Encyclopedia of Genes and Genomes (KEGG). Construction of the protein network and detection of hub genes were conducted in the STRING database. Data validation was performed via ELISA assay for the FOXO3 gene in obstructive and NOA patients. Significance was set at P-value <0.05.
Results: In NOA patients, 2115 genes were upregulated, and 1753 genes were downregulated compared to the control group. Ninety-one genes involved in spermatogenesis were downregulated. KEGG analysis revealed that the glucagon signaling, AMPK signaling, insulin and estrogen signaling, and oocyte meiosis pathways were upregulated, while the regulation of actin cytoskeleton, MAPK signaling pathway, focal adhesion, and chemical carcinogenesis – reactive oxygen species pathways were downregulated. Downstream genes with the highest score were PSMA4, PSMA6, PSMC1, PSME4, and UBA52, which are responsible for the ubiquitin-dependent protein degradation. The top hub genes with increasing expression were RPS18, RPS2, and RPS4X
Conclusion: Although hub genes selected within the altering pathways may serve as a diagnostic tool for NOA, further validation of the presented data is necessary, as protein-protein interactions may not reflect alterations in gene expression in vivo.
Downloads
References
Katz DJ, Teloken P, Shoshany O. Male infertility-the other side of the equation. Aust Fam Phys. 2017;46(9):641-6.
Ghieh F, Mitchell V, Mandon-Pepin B, Vialard F. Genetic defects in human azoospermia. Bas Clin Androl. 2019;29(1):1-16. DOI: https://doi.org/10.1186/s12610-019-0086-6
Dong M, Li H, Zhang X, Tan J. Weighted correlation gene network analysis reveals new potential mechanisms and biomarkers in non-obstructive azoospermia. Frontiers in Genetics. 2021;12:617133. DOI: https://doi.org/10.3389/fgene.2021.617133
Malcher A, Rozwadowska N, Stokowy T, Kolanowski T, Jedrzejczak P, Zietkowiak W, et al. Potential biomarkers of non-obstructive azoospermia identified in microarray gene expression analysis. Fertil Steril. 2013;100(6):1686-94. e7. DOI: https://doi.org/10.1016/j.fertnstert.2013.07.1999
Peña VN, Kohn TP, Herati AS. Genetic mutations contributing to non-obstructive azoospermia. Best Prac Rest CL EN. 2020;34(6):101479. DOI: https://doi.org/10.1016/j.beem.2020.101479
Dodé C, Hardelin J-P. Kallmann syndrome. Eur J Hum Genet. 2009;17(2):139-46. DOI: https://doi.org/10.1038/ejhg.2008.206
Batista RL, Costa EMF, Rodrigues AdS, Gomes NL, Faria Jr JA, Nishi MY, et al. Androgen insensitivity syndrome: a review. Arch Endocrin Metab. 2018;62:227-35. DOI: https://doi.org/10.20945/2359-3997000000031
Yatsenko AN, Georgiadis AP, Röpke A, Berman AJ, Jaffe T, Olszewska M, et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. New Engl J Med. 2015;372(22):2097-107. DOI: https://doi.org/10.1056/NEJMoa1406192
Boroujeni PB, Sabbaghian M, Totonchi M, Sodeifi N, Sarkardeh H, Samadian A, et al. Expression analysis of genes encoding TEX11, TEX12, TEX14 and TEX15 in testis tissues of men with non-obstructive azoospermia. JBRA Assist Reprod. 2018;22(3):185. DOI: https://doi.org/10.5935/1518-0557.20180030
Massart A, Lissens W, Tournaye H, Stouffs K. Genetic causes of spermatogenic failure. Asian J Androl. 2012;14(1):40. DOI: https://doi.org/10.1038/aja.2011.67
Marchetti F, Wyrobek AJ. Mechanisms and consequences of paternally‐transmitted chromosomal abnormalities. Birth Defects Res C. 2005;75(2):112-29. DOI: https://doi.org/10.1002/bdrc.20040
Adler I-D. Comparison of the duration of spermatogenesis between male rodents and humans. Mutat Res-Fund Mol M. 1996;352(1-2):169-72. DOI: https://doi.org/10.1016/0027-5107(95)00223-5
Cannarella R, Condorelli RA, Mongioì LM, La Vignera S, Calogero AE. Molecular biology of spermatogenesis: novel targets of apparently idiopathic male infertility. Int J Mol Sci 2020;21(5):1728. DOI: https://doi.org/10.3390/ijms21051728
Xia W, Mruk DD, Lee WM, Cheng CY. Unraveling the molecular targets pertinent to junction restructuring events during spermatogenesis using the Adjudin-induced germ cell depletion model. The J Endoc. 2007;192(3):563. DOI: https://doi.org/10.1677/JOE-06-0158
Zheng H, Zhou X, Li D-k, Yang F, Pan H, Li T, et al. Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men. Plos One. 2017;12(6):e0178535. DOI: https://doi.org/10.1371/journal.pone.0178535
Hadziselimovic F, Hadziselimovic NO, Demougin P, Krey G, Oakeley E. Piwi-pathway alteration induces LINE-1 transposon derepression and infertility development in cryptorchidism. Sex Dev. 2015;9(2):98-104. DOI: https://doi.org/10.1159/000375351
Yanaka N, Kobayashi K, Wakimoto K, Yamada E, Imahie H, Imai Y, et al. Insertional mutation of the murine kisimo locus caused a defect in spermatogenesis. J Biol Chem. 2000;275(20):14791-4. DOI: https://doi.org/10.1074/jbc.C901047199
Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, et al. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res. 2018;28(9):879-96. DOI: https://doi.org/10.1038/s41422-018-0074-y
Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H, et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Reports. 2013;3(6):2179-90. DOI: https://doi.org/10.1016/j.celrep.2013.05.031
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002. DOI: https://doi.org/10.1152/physrev.00027.2001
Sadowski M, Suryadinata R, Tan AR, Roesley SNA, Sarcevic B. Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life. 2012;64(2):136-42. DOI: https://doi.org/10.1002/iub.589
Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30(1):405-39. DOI: https://doi.org/10.1146/annurev.genet.30.1.405
Lord T, Law NC, Oatley MJ, Miao D, Du G, Oatley JM. A novel high throughput screen to identify candidate molecular networks that regulate spermatogenic stem cell functions. Biol Reprod. 2022;106(6):1175-90. DOI: https://doi.org/10.1093/biolre/ioac048
Kerns K, Morales P, Sutovsky P. Regulation of sperm capacitation by the 26S proteasome: an emerging new paradigm in spermatology. Biol Reprod. 2016;94(5):117, 1-9. DOI: https://doi.org/10.1095/biolreprod.115.136622
Morales P, Kong M, Pizarro E, Pasten C. Participation of the sperm proteasome in human fertilization. Hum Reprod. 2003;18(5):1010-7. DOI: https://doi.org/10.1093/humrep/deg111
Bhattacharyya S, Wilmington S, Matouschek A, editors. ATP-Dependent Proteases: The Cell’s Degradation Machines. Molecular Machines in Biology: Workshop of the Cell; 2011: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139003704.014
Qian M-X, Pang Y, Liu CH, Haratake K, Du B-Y, Ji D-Y, et al. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell. 2013;153(5):1012-24. DOI: https://doi.org/10.1016/j.cell.2013.04.032
Kasimanickam V, Kumar N, Kasimanickam R. Investigation of sperm and seminal plasma candidate microRNAs of bulls with differing fertility and In Silico prediction of miRNA-mRNA interaction network of reproductive function. Animals. 2022;12(18):2360. DOI: https://doi.org/10.3390/ani12182360
Downloads
- 191 388
Published
Issue
Section
How to Cite
License
Copyright (c) 2023 Duru Aras-Tosun
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.