Stereotactic surgery and its application in Alzheimer’s disease rat models
Stereotaxy in Alzheimer’s rat models
Keywords:
Stereotactic surgery, Alzheimer's disease, animal models, ratAbstract
Stereotactic surgery is a technique that can be used to locate small targets in the body and administer interventions and/or treatments, such as injections, to the specific target. Stereotactic surgery is frequently used to create neurological disease models in experimental research in addition to clinical practice. The injection is administered with appropriate glass injectors using the rodent brain coordinate atlas after the specific brain region is determined. Alzheimer’s disease (AD), the most common cause of dementia, has no curative treatment yet. AD models can be created in rodents through stereotactic surgery and injections of different substances. These AD models represent the disease and are frequently used especially for drug development studies. AD-like models seem to examine different and unidirectional developmental mechanisms according to the creating way. However, AD is a multidirectional disease. AD rodent models created using different methods have specific properties. This review aims to explain the basic aspects of stereotactic surgery and to discuss AD rodent models created with this surgical technique and also with alternate methods.
Downloads
References
Lozano AM, Gildenberg PL, Tasker RR. Textbook of Stereotactic and Functional Neurosurgery. In: Gildenberg PL, Krauss PGI, eds. History of Stereotactic Surgery. New York: Springer; 2009. pp. 3-35. DOI: https://doi.org/10.1007/978-3-540-69960-6_2
Chin LS, Regine WF. Principles and Practice of Stereotactic Radiosurgery. In: Tse VC, Kalani MYS, Adler JR, eds. Techniques of stereotactic localization. New York: Springer; 2015. pp. 25-32. DOI: https://doi.org/10.1007/978-1-4614-8363-2_3
Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, et al. Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. Lancet Neurol. 2021;20(6):484-96. doi: 10.1016/S1474-4422(21)00066-1 DOI: https://doi.org/10.1016/S1474-4422(21)00066-1
Ma X, Sun Z, Han X, Li S, Jiang X, Chen S, et al. Neuroprotective effect of resveratrol via activation of Sirt1 signaling in a rat model of combined diabetes and Alzheimer’s disease. Front Neurosci. 2020;13:1400. doi: 10.3389/fnins.2019.01400 DOI: https://doi.org/10.3389/fnins.2019.01400
Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal AKA, Khan ZA. EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, β amyloid and tau pathology in a rat model of Alzheimer’s disease. Front Aging Neurosci. 2018;10:244. doi: 10.3389/fnagi.2018.00244 DOI: https://doi.org/10.3389/fnagi.2018.00244
Sun P, Yin JB, Liu LH, Guo J, Wang SH, Qu CH, Wang CX. Protective role of Dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Biosci Rep. 2019;39(1). doi: 10.1042/BSR20180902 DOI: https://doi.org/10.1042/BSR20180902
Petrasek T, Vojtechova I, Lobellova V, Popelikova A, Janikova M, Brozka H, et al. The McGill transgenic rat model of Alzheimer's disease displays cognitive and motor impairments, changes in anxiety and social behavior, and altered circadian activity. Front Aging Neurosci. 2018;10:250. doi: 10.3389/fnagi.2018.00250 DOI: https://doi.org/10.3389/fnagi.2018.00250
Saffari PM, Alijanpour S, Takzaree N, Sahebgharani M, Etemad-Moghadam S, Noorbakhsh F, et al. Metformin loaded phosphatidylserine nanoliposomes improve memory deficit and reduce neuroinflammation in streptozotocin-induced Alzheimer's disease model. Life Sci. 2020;255:117861. doi: 10.1016/j.lfs.2020.117861 DOI: https://doi.org/10.1016/j.lfs.2020.117861
Jia JX, Yan XS, Song W, Fang X, Cai ZP, Huo DS, et al. The protective mechanism underlying phenylethanoid glycosides (PHG) actions on synaptic plasticity in rat Alzheimer’s disease model induced by β amyloid 1-42. J Toxicol Environ Health, Part A. 2018;81(21):1098-107. doi: 10.1080/15287394.2018.1501861 DOI: https://doi.org/10.1080/15287394.2018.1501861
Kucuk A, Comu F, Guney S, Duruk Erkent F, Isik B, Ozturk L, et al. Effects of Recurrent Sevoflurane Anesthesia on Erythrocyte Deformability in Experimentally Induced Alzheimer Rats. Gazi Med J. 2022;33(1) doi: 10.12996/gmj.2022.06 DOI: https://doi.org/10.12996/gmj.2022.06
Skaper SD. Neurotrophic Factors. In: Facchinetti R, Bronzuoli MR, Scuderi C, eds. An animal model of Alzheimer disease based on the intrahippocampal injection of amyloid β-peptide (1–42) . New York: Springer; 2018. pp. 343-352. DOI: https://doi.org/10.1007/978-1-4939-7571-6_25
Han M, Liu Y, Tan Q, Zhang B, Wang W, Liu J, et al. Therapeutic efficacy of stemazole in a β-amyloid injection rat model of Alzheimer's disease. Eur J Pharmacol. 2011;657(1-3):104-110. doi: 10.1016/j.ejphar.2011.01.065 DOI: https://doi.org/10.1016/j.ejphar.2011.01.065
Grieb P. Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol. 2016;53(3):1741-52. doi: 10.1007/s12035-015-9132-3 DOI: https://doi.org/10.1007/s12035-015-9132-3
Wang XC, Zhang J, Yu X, Han L, Zhou ZT, Zhang Y, et al. Prevention of isoproterenol-induced tau hyperphosphorylation by melatonin in the rat. Acta Physiol Sin. 2005;57(1):7-12.
Shin RW, Lee VM, Trojanowski JQ. Aluminum modifies the properties of Alzheimer's disease PHF tau proteins in vivo and in vitro. J Neurosci. 1994;14(11):7221-33. doi: 10.1523/JNEUROSCI.14-11-07221.1994 DOI: https://doi.org/10.1523/JNEUROSCI.14-11-07221.1994
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Amsterdam: Academic. 2007; 6th Edition.
Tekin E, Aslan Karakelle N, Dincer S. Effects of taurine on metal cations, transthyretin and LRP-1 in a rat model of Alzheimer’s disease. J Trace Elem Med Biol. 2023;79:127219. doi: 10.1016/j.jtemb.2023.127219 DOI: https://doi.org/10.1016/j.jtemb.2023.127219
Tekin E, Aslan Karakelle N, Dinçer S. Effect of Taurine Supplementation on Oxidative Stress in Liver Tissue in Old Rats with Experimental Alzheimer's Disease Model. Acta Physiol. 2019;227(S722):89. doi: 10.1111/apha.13424 DOI: https://doi.org/10.1111/apha.13424
Erkent FD, Isik B, Kucuk A, Ozturk L, Neselioglu S, Dogan HT, et al. Effects of recurrent sevoflurane anesthesia on cognitive functions with streptozotocin induced Alzheimer disease. Bratisl Med J. 2019;120(12):887–93. doi: 10.4149/BLL_2019_149 DOI: https://doi.org/10.4149/BLL_2019_149
Platt TL, Reeves VL, Murphy MP. Transgenic models of Alzheimer's disease: better utilization of existing models through viral transgenesis. Biochim Biophys Acta. 2013;1832(9):1437–48. doi: 10.1016/j.bbadis.2013.04.017 DOI: https://doi.org/10.1016/j.bbadis.2013.04.017
Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155–75. doi: 10.1007/s00401-016-1662-x DOI: https://doi.org/10.1007/s00401-016-1662-x
Kim HY, Lee DK, Chung BR, Kim HV, Kim Y. Intracerebroventricular Injection of Amyloid-β Peptides in Normal Mice to Acutely Induce Alzheimer-like Cognitive Deficits. Journal of visualized experiments: JoVE. 2016;(109):53308. doi: 10.3791/53308 DOI: https://doi.org/10.3791/53308
Swerdlow RH. Mitochondria and Mitochondrial Cascades in Alzheimer's Disease. J Alzheimer's Dis. 2018;62(3):1403–16. doi: 10.3233/JAD-170585 DOI: https://doi.org/10.3233/JAD-170585
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J Mol Biol. 2019;431(9):1843–68. doi: 10.1016/j.jmb.2019.01.018 DOI: https://doi.org/10.1016/j.jmb.2019.01.018
Shi H, Koronyo Y, Rentsendorj A, Regis GC, Sheyn J, Fuchs DT, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathol. 2020;139(5):813–36. doi: 10.1007/s00401-020-02134-w DOI: https://doi.org/10.1007/s00401-020-02134-w
Wang ZT, Zhang C, Wang YJ, Dong Q, Tan L, Yu JT. Selective neuronal vulnerability in Alzheimer's disease. Ageing Res Rev. 2020;62:101114. doi: 10.1016/j.arr.2020.101114 DOI: https://doi.org/10.1016/j.arr.2020.101114
Aslan Karakelle N, Dincer S, Yar Sağlam AS. The effect of intracerebroventricular amyloid β 1-42 application on cognitive functions in aged rats supplemented with taurine and the change of peroxisomal proteins in this process. Brain Res Bull. 2021;172:89–97. doi: 10.1016/j.brainresbull.2021.04.011 DOI: https://doi.org/10.1016/j.brainresbull.2021.04.011
Alisavari N, Soleimani-Asl S, Zarei M, Hashemi-Firouzi N, Shahidi, S. Protective effect of chronic administration of pelargonidin on neuronal apoptosis and memory process in amyloid-β-treated rats. Avicenna J Phytomed. 2021;11(4):407–16. doi: 10.22038/AJP.2021.17680
Samant NP, Gupta GL. Avicularin Attenuates Memory Impairment in Rats with Amyloid Β-Induced Alzheimer's Disease. Neurotox Res. 2022;40(1):140–53. doi: 10.1007/s12640-021-00467-2 DOI: https://doi.org/10.1007/s12640-021-00467-2
N'Go PK, Ahami OTA, El Hessni A, Azzaoui FZ, Aboussaleh Y, Tako AN. Neuroprotective effects of the Chrysophyllum perpulchrum extract against an Alzheimer-like rat model of β amyloid1-40 intrahippocampal injection. Transl Neurosci. 2021;12(1):545–60. doi: 10.1515/tnsci-2020-0183. DOI: https://doi.org/10.1515/tnsci-2020-0183
Downloads
- 220 307
Published
Issue
Section
How to Cite
License
Copyright (c) 2024 Esra Tekin
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.