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Abstract 

 

Stereotactic surgery is a technique that can be used to locate small targets in the body and administer 

interventions and/or treatments, such as injections, to the specific target. Stereotactic surgery is frequently 

used to create neurological disease models in experimental research in addition to clinical practice. The 

injection is administered with appropriate glass injectors using the rodent brain coordinate atlas after the 

specific brain region is determined. Alzheimer’s disease (AD), the most common cause of dementia, has no 

curative treatment yet. AD models can be created in rodents through stereotactic surgery and injections of 

different substances. These AD models represent the disease and are frequently used especially for drug 

development studies. AD-like models seem to examine different and unidirectional developmental 

mechanisms according to the creating way. However, AD is a multidirectional disease. AD rodent models 

created using different methods have specific properties. This review aims to explain the basic aspects of 

stereotactic surgery and to discuss AD rodent models created with this surgical technique and also with 

alternate methods. 
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Introduction 

Stereotactic surgery is used to locate small targets in the 

body and administer surgical interventions and/or treatments, such 

as injection, stimulation, ablation, biopsy, implantation, and/or 

radiosurgery, to these targets. This surgery uses a three-

dimensional coordinate system to apply such interventions while 

causing minimal damage to the targets [1]. Stereotactic 

applications are frequently used in neurological research, 

pharmacological evaluations, and experiments on central nervous 

system diseases to eliminate, disrupt, or increase the function of 

certain regions of the brain [2].  

Alzheimer's disease (AD) is a neurodegenerative disease 

that causes cognitive loss, personality changes, and speech 

disorders. AD, which is the most common cause of dementia, 

currently does not have a definitive treatment [3]. Rodents are the 

animals most often used in neuroscience studies. Studies are being 

conducted using the AD models created in rodents, and treatment 

options are being developed for the disease [4–6]. In these studies, 

transgenic rodents can be used, and AD models can be created 

using stereotactic surgery [7,8]. 

Stereotactic surgery is a method that is frequently used in 

rats to create AD models. Stereotactic methods used to create 

models of AD allow injections of substances to be administered to 

certain parts of the brain [9]. Appropriate coordinates are set in the 

stereotactic device to generate AD models. The injection area is 

determined using the brain coordinate atlas for rats. These 

coordinates may include the brain ventricles to ensure the 

distribution of the applied substance in the brain in addition to the 

hippocampus, which is an important brain region involved in the 

development of AD [10,11]. Therefore, the injection can be 

performed intracerebroventricularly or intrahippocampally.  

Chemicals to be injected to induce AD include various 

forms of amyloid or streptozotocin and also agents that will 

promote tau accumulation [12–14]. It is also known that metal 

ions play a role in AD development. Therefore, injections of 

substances associated with metal cations are also used to induce a 

model of AD [15].  

In this traditional review, stereotactic surgery and its 

application in AD models was defined along with its basic 

features. This review also aims to discuss the rodent models of AD 

created by methods other than stereotactic surgery. 

Application Steps of Stereotactic Surgery 

First, the head of the experimental animal under 

anesthesia is shaved. The rats are placed in the stereotactic device 

so that the dental apparatus grasps the upper incisors, the ear bars 

fit into the external ear canal, and the head ceiling is in the 

horizontal plane. The movable apparatus of the device is 

compressed so as not to damage the ear and chin and to obtain a 

stable plane during the application (Figure 1). After this 

stabilization process, an incision is made in the scalp using a 

scalpel. After cleaning the periosteum in the skull, the lambda and 

bregma, which are reference points that allow us to determine the 

coordinates, are exposed. After the brain region to be injected with 

the substance is determined from the stereotaxic coordinate atlas 

[16], a hole is drilled into the skull in this region after which the 

desired coordinates are injected using a micro-injector. It is 

appropriate to slowly administer the chemical infusion and then 

remove the injector after waiting for a while (approximately 5 

min) so that the chemical is absorbed after the infusion. The skin 

incision is then closed with sutures. Attention to maintaining 

asepsis during the surgical procedure positively affects the 

survival of the experimental animal after the procedure. 
 

Figure 1: Stereotactic neurosurgery in rats 
 

 
 

For example, in the rat brain atlas of Paxinos and Watson 

[16], the coordinates of the region we want to inject should be 3.6 

mm posterior to the bregma, 2.4 mm lateral to the sagittal suture, 

and 2.8 mm ventral to the rat skull surface. In this case, after 

bringing the micro injector needle to the bregma, it should be 

moved 3.6 mm posterior and 2.4 mm lateral from the midline 

sagittal suture through the apparatus of the stereotactic device. 

After making a mark with a pencil perpendicular to this point, a 

hole is drilled into the skull at this point. The micro injector is 

brought to the appropriate coordinates and the syringe needle is 

advanced 2.4 mm ventrally in the vertical direction by means of 

stereotactic device apparatus after which the substance is injected. 

Before starting the experiment, practicing with a 

preliminary study is useful. During this preliminary study, it is 

beneficial for experimental accuracy to inject a dye (for example, 

methylene blue) and then take sections from the rat brain and make 

sure that the stained area is the one we wish to study.  

AD Models Created by Stereotactic Surgery 

Since no agent is available that can provide a definitive 

treatment for AD, experimental models are necessary both to 

better understand the disease pathogenesis and develop a 

treatment agent. In addition to AD models created by stereotactic 

surgery, AD models created with transgenic animals have also 

been applied in recent years [17–20]. AD models created in 

different ways have their own distinctive features. It should be 

emphasized that transgenic models are established via a non-

physiological process that reflects only certain pathological 

features. This drawback is most likely the cause of clinical failure 

of therapeutic agents that show positive effects in transgenic 

preclinical studies [21]. In addition, both transgenic and surgical 

AD models target only one developmental mechanism. However, 

since AD is a multifactorial disease, treatments targeting only one 

of the several developmental stages do not produce clinical 

success [21]. 

The most studied step in animal models for AD involves 

amyloid deposition. Triggering amyloid deposition in animals 

often results in cognitive impairment [22]. However, many 

pathways, such as neuronal loss, deterioration in both synaptic 

plasticity and long-term potentiation, pericyte dysfunction, metal 

dyshomeostasis, mitochondrial distress, blood–brain barrier 
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dysfunction, and pathologies associated with tau 

hyperphosphorylation, have been described in the development of 

AD [23–26]. Therefore, the reason why these models cannot fully 

reflect AD seems to be that they do not include the entire 

pathogenesis. On the other hand, the pathogenesis of AD has not 

yet been fully elucidated. 

Stereotactic injection of amyloid derivatives is often 

preferred for creating a model of AD. Behavioral tests have shown 

that intracerebroventricular injection of amyloid β 1-42 peptide 

leads to impairment of learning and memory function [27]. In a 

previous study, it was shown that learning and memory were 

impaired in behavioral tests after intracerebroventricular injection 

of amyloid β 1-42 peptide, and hippocampal neuronal survival was 

impaired in histological analyses [28]. 

In a different study, the effect of amyloid β injected 

intracerebroventricularly via stereotactic surgery in rats was 

examined, and it was shown that infusion causes impairment of 

learning and memory. It was also found that amyloid β expression 

in the cortex and hippocampus increased in the group that received 

amyloid infusion compared to the control [29]. 

In a different rodent study in which stereotaxic injection 

was performed intrahippocampally, AD model was induced by 

amyloid β 1-40. It was shown that spatial learning and memory 

were impaired in rats after the injection [30]. 

Conclusion  

AD models that are established via the use of stereotactic surgery 

reflect the disease in terms of learning and memory impairment 

and pathological accumulations of several kinds of proteins. 

However, models established via stereotactic surgery seem to 

represent the disease in terms of only one pathway depending on 

the substance injected and the pathway triggered. Injection of 

amyloid derivatives is frequently used to create an AD model via 

stereotactic surgery. Amyloid injection produces results that 

mimic AD in aspects of amyloid plaque formation and 

hippocampal amyloid deposition. However, the multidirectional 

pathogenesis of AD does not produce the expected results in pre-

clinical studies conducted with AD models as these models reflect 

only a single pathway. Transgenic animal models of AD also 

present only one pathological pathway. More studies are needed 

to elucidate the unknown mechanisms of AD, to develop models 

covering the entire pathogenesis of the disease, and to develop 

treatment agents as a result. 
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