The role of urinary kidney injury molecule-1 in monitoring the child with idiopathic microscopic hematuria

Authors

Keywords:

Idiopathic microscopic hematuria, Kidney injury molecule-1, Microalbuminuria

Abstract

Background/Aim: Idiopathic microscopic hematuria is common during childhood, and numerous factors play a role with varying degrees in its etiopathogenesis. We aimed to investigate whether urinary kidney injury molecule-1 level could be a new indicator to detect a possible renal injury that may cause idiopathic microscopic hematuria. Methods: This prospective case-control study included 38 children between 1-15 years of age who were followed up due to idiopathic microscopic hematuria without hypertension and/or edema and 39 healthy individuals with similar gender distribution. Kidney injury molecule-1, urine culture, microalbumin, calcium, magnesium, uric acid, and creatinine levels in spot urine were measured in both groups. A throat culture and abdominal ultrasound were performed on all those included. Results: No significant differences were found between the patient and control groups in terms of age, gender, weight, and height (P>0.05). Microalbumin, microalbumin to creatinine ratio in spot urine, urinary kidney injury molecule-1 levels, and kidney injury molecule-1 to creatinine ratio were higher among the patients than the controls (P=0.016, P=0.013, P=0.001, and P=0.001, respectively). Conclusion: Urinary microalbumin and kidney injury molecule-1 levels, as well as rates of these two markers to creatinine, may be higher in the children with idiopathic microscopic hematuria. Our findings show that children with microscopic hematuria should be monitored for renal tubular injury and the development of chronic renal disease.

Downloads

Download data is not yet available.

References

Feld LG, Waz WR, Perez LM, Joseph DB. Hematuria: an integrated medical and surgical approach. Pediatr Clin North Am. 1997;44(5):1191-210. doi: 10.1016/s0031-3955(05)70553-8.

Vivante A, Afek A, Frenkel-Nir Y, Tzur D, Farfel A, Golan E, et al. Persistent asymptomatic isolated microscopic hematuria in Israeli adolescents and young adults and risk for end-stage renal disease. JAMA. 2011;306(7):729-36. doi: 10.1001/jama.2011.1141.

Feld LG, Meyers KE, Kaplan BS, Stapleton FB. Limited evaluation of microscopic hematuria in pediatrics. Pediatrics. 1998;102(4):E42. doi: 10.1542/peds.102.4.e42.

Brown DD, Reidy KJ. Approach to the Child with Hematuria. Pediatr Clin North Am. 2019;66(1):15-30. doi: 10.1016/j.pcl.2018.08.003.

Tu WH, Shortliffe LD. Evaluation of asymptomatic, atraumatic, hematuria in children and adults. Nat Rev Urol. 2010;7(4):189-94. doi: 10.1038/nrurol.2010.27.

Moreno JA, Yuste C, Gutiérrez E, Sevillano ÁM, Rubio-Navarro A, Amaro-Villalobos JM, et al. Haematuria as a risk factor for chronic kidney disease progression in glomerular diseases: A review. Pediatr Nephrol, 2016;31(4):523-33. doi: 10.1007/s00467-015-3119-1.

Vivante A, Calderon-Margalit R, Skorecki K. Hematuria and risk for end-stage kidney disease. Curr Opin Nephrol Hypertens. 2013;22(3):325-30. doi: 10.1097/MNH.0b013e32835f7241.

Ferrari B, Fogazzi GB, Garigali G, Messa P. Acute interstitial nephritis after amoxycillin with hematuria, red blood cell casts and hematuria-induced acute tubular injury. Clin Nephrol. 2013;80(2):156-60. doi: 10.5414/CN107179.

Chow KM, Kwan BC, Li PK, Szeto CC. Asymptomatic isolated microscopic haematuria: long-term follow-up. QJM. 2004;97(11):739–45. doi: 10.1093/qjmed/hch125.

Feng CY, Xia YH, Wang WJ, Xia J, Fu HD, Wang X, et al. Persistent asymptomatic isolated hematuria in children: clinical and histopathological features and prognosis. World J Pediatr. 2013;9(2):163-68. doi: 10.1007/s12519-013-0415-3.

Kim H, Lee M, Cha MU, Nam KH, An SY, Park S, et al. Microscopic hematuria is a risk factor of incident chronic kidney disease in the Korean general population: a community-based prospective chort study. QJM. 2018;111(6):389-97. doi: 10.1093/qjmed/hcy054.

Nepal M, Bock GH, Sehic AM, Schultz MF, Zhang PL. Kidney injury molecule-1 expression identifies proximal tubular injury in urate nephropathy. Ann Clin Lab Sci. 2008;38(3):210-14.

Endre Z, Westhuyzen J. Early detection of acute kidney injury: Emerging new biomarkers. Nephrology (Carlton). 2008;13(2):91-8. doi: 10.1111/j.1440-1797.2007.00905.x.

Devarajan P. Biomarkers for the early detection of acute kidney injury. Curr Opin Pediatr. 2011;23(2):194-200. doi: 10.1097/MOP.0b013e328343f4dd.

Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237-44. doi: 10.1046/j.1523-1755.2002.00433.x.

Ichimura T, Brooks CR, Bonventre JV. Kim-1/Tim-1 and immune cells: shifting sands. Kidney Int. 2012;81(9):809-11. doi: 10.1038/ki.2012.11.

Zhang PL, Rhotblum LI, Han WK, Blasick TM, Potdar S, Bonventre JV. KIM-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int. 2008;73(5):608-14. doi: 10.1038/sj.ki.5002697.

Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE. Biomarkers in chronic kidney disease: a review. Kidney Int. 2011;80(8):806–21. doi: 10.1038/ki.2011.198.

Fuchs TC, Frick K, Emde B, Czasch S, von Landenberg F, Hewitt P. Evaluation of novel acute urinary rat kidney toxicity biomarker for subacute toxicity studies in preclinical trials. Toxicol Pathol. 2012;40(7):1031-48. doi: 10.1177/0192623312444618.

Bhavsar NA, Köttgen A, Coresh J, Astor BC. Neutrophil gelatinase-associated lipocalcin (ngal) and kıdney inury molecule 1 (KIM-1) as predictors of incident CKD stage 3: the atherosclerosis risk in communities (aric) study. Am J Kidney Dis. 2012;60(2):233-40. doi: 10.1053/j.ajkd.2012.02.336.

Nejat M, Pickering JW, Devarajan P, Bonventre JV, Edelstein CL, Walker RJ, et al. Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Int. 2012;81 (12):1254-62. doi: 10.1038/ki.2012.23.

Vinken P, Starckx S, Barale-Thomas E, Looszova A, Sonee M, Goeminne N, et al. Tissue KIM-1 and urinary clusterin as early indicators of cisplatin-induced acute kıdney injury in rats. Toxicol Pathol. 2012;40(7):1049-62. doi: 10.1177/0192623312444765.

Sabbisetti VS, Waikar SS, Antoine DJ, Smiles A, Wang C, Ravisankar A, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol. 2014;25(10):2177-86. doi: 10.1681/ASN.2013070758.

Hall IE, Coca SG, Perazella MA, Eko UU, Luciano RL, Peter PR, et al. Risk of poor outcomes with novel and traditional biomarkers at clinical AKI diagnosis. Clin J Am Soc Nephrol. 2011;6(12):2740-9. doi: 10.2215/CJN.04960511.

Lim AI, Chan LY, Lai KN, Tang SC, Chow CW, Lam MF, et al. Distinct role of matrix metalloproteinase-3 in kidney injury molecule-1 shedding by kidney proximal tubular epithelial cells. Int J Biochem Cell Biol. 2012;44(6):1040-50. doi: 10.1016/j.biocel.2012.03.015.

Ariarajah N, Gerstel E, Martin PY, Ponte B. Biomarkers in acute kidney injury: an update. Rev Med Suisse. 2011;7(284):490-4.

Ding W, Mak RH. Early markers of obesity-related renal injury in childhood. Pediatr Nephrol. 2015;30(1):1-4. doi: 10.1007/s00467-014-2976-3.

Assadi FK. Value of urinary excretion of microalbumin in predicting glomerular lesions in children with isolated microscopic hematuria. Pediatr Nephrol. 2005;20(8):1131–5. doi: 10.1007/s00467-005-1928-3.

Perkins BA, Ficociello LH, Ostrander BE, Silva KH, Weinberg J, Warram JH, et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol. 2007;18(4):1353-61. doi: 10.1681/ASN.2006080872.

Downloads

Published

2021-08-01

Issue

Section

Research Article

How to Cite

1.
Kızılocak H, Dursun H, Hasbal C, Hatipoğlu S. The role of urinary kidney injury molecule-1 in monitoring the child with idiopathic microscopic hematuria. J Surg Med [Internet]. 2021 Aug. 1 [cited 2022 Aug. 18];5(8):746-9. Available from: https://jsurgmed.com/article/view/837889