The effect of dietary total antioxidant capacity of individuals with type 2 diabetes on metabolic and oxidative parameters: A cross-sectional study
Dietary antioxidant capacity in type 2 diabetes
Keywords:
Type 2 diabetes, Dietary total antioxidant capacity, Glycemic control, Oxidative parameters, Metabolic parametersAbstract
Background/Aim: The aim of this study is to determine the dietary total antioxidant capacity (DTAC) values and levels of certain serum oxidative parameters in individuals with previously and newly diagnosed type 2 diabetes and to evaluate the impact of these findings on glycemic values and metabolic parameters.
Methods: This study was conducted with a total of 97 participants aged 19-64, comprising 35 individuals with a previous type 2 diabetes diagnosis, 32 individuals with a recent type 2 diabetes diagnosis, and 30 healthy participants. During face-to-face interviews, participants provided descriptive information, physical activity levels, and anthropometric measurements. DTAC was calculated from three-day dietary intake records using various methods. Serum samples were collected for the analysis of glycemic, lipid, and oxidative parameters.
Results: The results show that DTAC values (specifically derived from total radical-trapping antioxidant potential (TRAP) and total phenolics (TP) values)) and serum TAC levels tend to decrease with both prolonged diabetes age and when compared to individuals without diabetes (P<0.05). DTAC values were found to have a significant effect on some oxidative parameters like TAC, paraoxonase 1, and arylesterase (P<0.05), while serum oxidative parameters were found to have no significant effect on glycemic and lipid parameters.
Conclusion: It was concluded that low DTAC may be a risk factor related to oxidative stress depending on type 2 diabetes and diabetes age.
Downloads
References
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009;32(1):62-7.
Wright E, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 2006 Feb;60(3):308-14.
Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003;17:24-38.
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm J 2016;24:547-53.
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015;97:55-74.
Dakhale GN, Chaudhari HV, Shriva Stava M. Supplementation of vitamin C reduces blood glucose and improves glycosylated hemoglobin in type 2 diabetes mellitus: a randomized, double-blind study. Adv Pharmacol Sci 2011;2011:195271.
Manning PJ, Sutherland WH, Walker RJ, Williams SM, De Jong SA, Ryalls AR, et al. Effect of high dose vitamin E on insulin resistance and associated parameters in overweight subjects. Diabetes Care 2004;27(9):2166-71.
Qureshi SA, Lund AC, Veierød MB, Carlsen MH, Blomhoff R, Andersen LF, et al. Food items contributing most to variation in antioxidant intake; a cross-sectional study among Norwegian women. BMC Public Health 2014;14:45.
Sharifi-Rad M, Anil Kumar NV, Zucca P, Aroni EM, Dini L, Panzarini E, et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020;11:694.
Puchau B, Zulet MA, De Echavarri AG, Hermsdorff HH, Martínez JA. Dietary total antioxidant capacity: A novel indicator of diet quality in healthy young adults. J Am Coll Nutr 2009;28(6):648-56.
El Frakchi N, El Kinany K, El Baldi M, Saoud Y, El Rhazi K. Dietary total antioxidant capacity of Moroccan type 2 diabetes mellitus patients. PLoS One 2024;19(4):e0301805.
Fateh HL, Mirzaei N, Gubari MIM, Darbandi M, Najafi F, Pasdar Y. Association between dietary total antioxidant capacity and hypertension in Iranian Kurdish women. BMC Womens Health 2022;22(1):255.
Kim SA, Joung H, Shin S. Dietary pattern, dietary total antioxidant capacity, and dyslipidemia in Korean adults. Nutr J 2019;18(1):37.
Parohan M, Anjom-Shoae J, Nasiri M, Khodadost M, Khatibi SR, Sadeghi O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr 2019;58(6):2175-89.
Ha K, Kim K, Sakaki JR, Chun OK. Relative validity of dietary total antioxidant capacity for predicting all cause mortality in comparison to diet quality indexes in us adults. Nutrients 2020;12(5):1210.
Esen C, Alkan BA, Kırnap M, Akgül O, Işıkoğlu S, Erel O. The effects of chronic periodontitis and rheumatoid arthritis on serum and gingival crevicular fluid total antioxidant/oxidant status and oxidative stress index. J Periodontol 2012;83(6):773 9.
Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005;38(12):1103-11.
Gordon C, Chumlea WC, Roche AF. Measurement descriptions and techniques. In: Lohman T, Roche AF, Martorell R, eds. Anthropometric standardization reference manual. Human Kinetics Books: IL: Champaign; 1988. pp. 3-12.
World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation presented at the World Health Organization, Available from: https://pubmed.ncbi.nlm.nih.gov/11234459/ 16th Jan 2024.
Ashwell M, Gibson S. Waist-to-height ratio as an indicator of 'early health risk': simpler and more predictive than using a 'matrix' based on BMI and waist circumference. BMJ Open 2016;6(3):e010159.
World Health Organization. Waist circumference and waist-hip ratio report of a WHO expert consultation. Geneva, 2000. Available from: https://www.who.int/publications/i/item/9789241501491 22nd Jan 2024.
Carlsen MH, Harvolsen BL, Holte K, Bøhn SK, Dragland S, Sampson L. The total antioxidant content of Moore Ethan 3100 foods, bever- ages, spices, herbs, Ana supplements Led worldwide. Nutr J 2010;9;3.
Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res 2006;50(11):1030-8.
Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, et al. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 2003;133(9):2812-9.
Haytowitz D, Bhagwat S. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2. US Department of Agriculture 2010;10-48.
Schmind M. BEBİS 8.2 (package insert). Struttgart: Entwickelt an der Universital Hohenheim, 2024. https://www.bebis.com.tr
R Core Team. (package insert). R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2024. https://www.R-project.org/
IBM Corp. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.
Çetiner Ö, Şendur SN, Yalçın T, Bayraktar M, Rakıcıoğlu N. Dietary Total Antioxidant Capacity and Oxidative Stress in Patients with Type-2 Diabetes. Prog Nutr 2021;23(2):e2021050.
Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med. 2021 May;171(2):179-89.
Fiorentino TV, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 2013;19(32):5695-703.
Holland N, Furlong C, Bastaki M, Richter R, Bradman A, Huen K, et al. Paraoxonase polymorphisms, haplotypes, and enzyme activity in Latino mothers and newborns. Environ Health Perspect 2006 Jul;114(7):985-91.
Mackness B, Durrington PN, Abuashia B, Boulton AJ, Mackness MI. Low paraoxonase activity in type II diabetes complicated by retinopathy. Clin Sci (Lond) 2000;98:355-63.
Suvarna R, Rao SS, Joshi C, Kedage V, Muttigi M, K Shetty J, et al. Paraoxonase activity in type 2 diabetes mellitus patients with and without complications. Journal of Clinical and Diagnostic Research 2011;5(1):63-5.
Rajlic S, Treede H, Münzel T, Daiber A, Duerr GD. Early Detection Is the Best Prevention-Characterization of Oxidative Stress in Diabetes Mellitus and Its Consequences on the Cardiovascular System. Cells 2023;12(4):583.
Kimura F, Hasegawa G, Obayashi H, Dachi T, Hara H, Ohta M, et al. Serum extracellular superoxide dismutase in patients with type 2 diabetes: relationship to the development of micro-and macrovascular complications. Diabetes care 2003;26(4):1246-50.
Whiting PH, Kalansooriya A, Holbrook I, Haddad F, Jennings PE. The relations between chronic glycaemic control and oxidative stress in type 2 diabetes mellitus. Br J Biomed Sci 2008:65:71-4.
Ashor AW, Al-Rammahi TMM, Abdulrazzaq VM, Siervo M. Adherence to a healthy dietary pattern is associated with greater anti-oxidant capacity and improved glycemic control in Iraqi patients with type 2 diabetes. Med J Nutrition Metab 2022;15(1):35-45.
Kharroubi AT, Darwish HM, Akkawi MA, Ashareef AA, Almasri ZA, Bader KA, et al. Total antioxidant status in type 2 diabetic patients in Palestine. J Diabetes Res 2015;2015:461271.
Gürsu MF, Özdin M. Sigara içenlerde serum paraoksonaz (PON1) aktiviteleri ile malondialdehit düzeylerinin araştırılması. Fırat Tıp Dergisi 2002;7:732-7.
Cho SY, Park JY, Park EM, Choi MS, Lee MK, Jeon SM, et al. Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clin Chim Acta 2002;317(1-2):109-17.
Çetiner Ö, Rakıcıoğlu N. Hiperglisemi, Oksidatif Stres ve Tip 2 Diyabette Oksidatif Stres Belirteçlerinin Tanımlanması. Turk J Diab Obes 2020;4(1):60-8.
Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B, et al. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 2012;95(4):925–33.
Psaltopoulou T, Panagiotakos DB, Pitsavos C, Chrysochoou C, Detopoulou P, Skoumas J, et al. Dietary antioxidant capacity is inversely associated with diabetes biomarkers: the ATTICA study. Nutr Metab Cardiovasc Dis 2011;21(8):561-7.
Mancini FR, Affret A, Dow C, Balkau B, Bonnet F, Boutron-Ruault MC, et al. Dietary antioxidant capacity and risk of type 2 diabetes in the large prospective E3N-EPIC cohort. Diabetologia 2018;61(2):308-16.
Van Der Schaft N, Schoufour JD, Nano J, Kiefte-de Jong JC, Muka T, et al. Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: the Rotterdam Study. Eur J Epidemiol 2019;34(9):853-61.
Khalil A, Gaudreau P, Cherki M, Wagner R, Tessier DM, Fulop T, et al. Antioxidant-rich food intakes and their association with blood total antioxidant status and vitamin C and E levels in community-dwelling seniors from the Quebec longitudinal study NuAge. Exp Gerontol 2011;46(6):475-81.
Natella F, Nardini M, Giannetti I, Dattilo C, Scaccini C. Coffee drinking influences plasma antioxidant capacity in humans. J Agric Food Chem 2002;50(21):6211-6.
Torabian S, Haddad E, Rajaram S, Banta J, Sabaté J. Acute effect of nut consumption on plasma total polyphenols, antioxidant capacity and lipid peroxidation. J Hum Nutr Diet 2009;22(1):64-71.
Leenen R, Roodenburg AJ, Tijburg LB, Wiseman SA. A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur J Clin Nutr 2000;54(1):87-92.
Downloads
- 45 40
Published
Issue
Section
How to Cite
License
Copyright (c) 2026 Özlem Özpak Akkuş, Meltem Mermer, Ramazan Gen, Mehmet Burak Yavuz Çimen, Antonios Koutelidakis, İhsan Dönmez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








