Antiepileptic drug exposure in the juvenile period does not affect cognitive functions and histomorphology of the hippocampus in adult rats
Antiepileptic drug exposure does not affect cognitive functions in adult rats
Keywords:
Antiepileptic drugs, cognitive functions, rats, hippocampusAbstract
Background/Aim: The impact of long-term antiepileptic drug use during childhood, particularly during critical growth and development phases, remains poorly understood, particularly in terms of its potential side effects on cognitive and locomotor functions in adulthood. This concern is further heightened for patients with a history of multiple drug use.
Methods: In our experimental animal study, 80 rats were divided into eight groups according to gender and the drugs used. Levetiracetam, vigabatrin, and sodium valproate were added to the drinking water from the 4th week to the 12th week postnatally (juvenile period). After the 12th week (adult period), all groups were tested in the following order: the Morris Water Maze, the Contextual Fear Conditioning Test, the Rotarod Performance Test, and a histomorphological investigation of the hippocampus.
Results: The Morris Water Maze Test, which evaluates learning, showed no changes after chronic usage of antiepileptic drugs during the initial 5 days of swimming tests. On the sixth day of memory retention tests, no effect was observed. Additionally, no significant impairment was noted in the Contextual Fear Conditioning Test that assesses associative learning. In the Rotarod test, which evaluates motor coordination, these drugs exhibited no effect on locomotor activity. Furthermore, the histomorphological dissection of the hippocampus revealed no signs of apoptosis or toxicity.
Conclusion: Consequently, the chronic use of levetiracetam, vigabatrin, and sodium valproate did not affect learning, memory, and locomotor activity. Histomorphologically, no neurodegenerative effects on the hippocampus were detected.
Downloads
References
Annergers JF. The epidemiology of epilepsy. In: Wyllie E (ed). The treatment of epilepsy: principles and practice. 3rd ed. Philadelphia: Lippincot Williams &Wilkins; 2001. pp. 131-8.
Marson AG, Kadir ZA, Hutton JL, Chadwick DW. The new antiepileptic drugs: a systematic review of their efficacy and tolerability. Epilepsia. 1997 Aug;38(8):859-80. doi: 10.1111/j.1528-1157.1997.tb01251.x. PMID: 9579887. DOI: https://doi.org/10.1111/j.1528-1157.1997.tb01251.x
Vermeulen J, Aldenkamp AP. Cognitive side-effects of chronic antiepileptic drug treatment: a review of 25 years of research. Epilepsy Res. 1995 Oct;22(2):65-95. doi: 10.1016/0920-1211(95)00047-x. PMID: 8777903. DOI: https://doi.org/10.1016/0920-1211(95)00047-X
Aldenkamp AP, Alpherts WC, Sandstedt P, Blennow G, Elmqvist D, Heijbel J, Nilsson HL, Tonnby B, Wåhlander L, Wosse E. Antiepileptic drug-related cognitive complaints in seizure-free children with epilepsy before and after drug discontinuation. Epilepsia. 1998 Oct;39(10):1070-4. doi: 10.1111/j.1528-1157.1998.tb01292.x. PMID: 9776327. DOI: https://doi.org/10.1111/j.1528-1157.1998.tb01292.x
Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013 Jun;4(6):624-30. PMID: 23930179; PMCID: PMC3733029.
Eadie MJ, Tyrer JH. Anticonvulsant therapy. In: Eadie MJ (ed). Drug therapy in neurology. Brisbane: Churchill-livingstone; 1992. pp. 97-173.
Franklin CL, Mark AS, Steven HW. Nutrition. In: Franklin CL (ed) The Laboratory Rat. 2nd ed. Amsterdam: Elsevier; 2006. pp 264.
Morris RGM. Spatial localization dose not require the presence of local cues. Learn Motiv 1981;12:239-60. DOI: https://doi.org/10.1016/0023-9690(81)90020-5
D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 2001 Aug;36(1):60-90. doi: 10.1016/s0165-0173(01)00067-4. PMID: 11516773. DOI: https://doi.org/10.1016/S0165-0173(01)00067-4
Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992 Apr;106(2):274-85. doi: 10.1037//0735-7044.106.2.274. PMID: 1590953. DOI: https://doi.org/10.1037//0735-7044.106.2.274
Monville C, Torres EM, Dunnett SB. Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J Neurosci Methods. 2006 Dec 15;158(2):219-23. doi: 10.1016/j.jneumeth.2006.06.001. Epub 2006 Jul 11. PMID: 16837051. DOI: https://doi.org/10.1016/j.jneumeth.2006.06.001
Zwierzyńska E, Pietrzak B. The differential effect of levetiracetam on memory and anxiety in rats. Epilepsy Behav. 2022 Nov;136:108917. doi: 10.1016/j.yebeh.2022.108917. Epub 2022 Sep 20. PMID: 36150302. DOI: https://doi.org/10.1016/j.yebeh.2022.108917
Rzezak P, Lima EM, Gargaro AC, Coimbra E, de Vincentiis S, Velasco TR, Leite JP, Busatto GF, Valente KD. Everyday memory impairment in patients with temporal lobe epilepsy caused by hippocampal sclerosis. Epilepsy Behav. 2017 Apr;69:31-6. doi: 10.1016/j.yebeh.2017.01.008. Epub 2017 Feb 20. PMID: 28222339. DOI: https://doi.org/10.1016/j.yebeh.2017.01.008
Yao X, Yang W, Ren Z, Zhang H, Shi D, Li Y, Yu Z, Guo Q, Yang G, Gu Y, Zhao H, Ren K. Neuroprotective and angiogenesis effects of levetiracetam following ischemic stroke in rats. Front Pharmacol. 2021 May 14;12:638209. doi: 10.3389/fphar.2021.638209. PMID: 34054520; PMCID: PMC8161206. DOI: https://doi.org/10.3389/fphar.2021.638209
Mert MK, Orgun LT. Evaluation of the efficacy and safety of levetiracetam treatment for neonatal seizures in extremely preterm infants. J Surg Med. 2020;4(5):394-9. DOI: https://doi.org/10.28982/josam.724986
Edalatmanesh MA, Hosseini M, Ghasemi S, Golestani S, Sadeghnia HR, Mousavi SM, Vafaee F. Valproic acid-mediated inhibition of trimethyltin-induced deficits in memory and learning in the rat does not directly depend on its anti-oxidant properties. Ir J Med Sci. 2016 Feb;185(1):75-84. doi: 10.1007/s11845-014-1224-y. Epub 2015 Feb 1. PMID: 25638225. DOI: https://doi.org/10.1007/s11845-014-1224-y
Hosseini M, Dastghaib SS, Rafatpanah H, Hadjzadeh MA, Nahrevanian H, Farrokhi I. Nitric oxide contributes to learning and memory deficits observed in hypothyroid rats during neonatal and juvenile growth. Clinics (Sao Paulo). 2010;65(11):1175-81. doi: 10.1590/s1807-59322010001100021. PMID: 21243293; PMCID: PMC2999716. DOI: https://doi.org/10.1590/S1807-59322010001100021
Azizi-Malekabadi H, Hosseini M, Soukhtanloo M, Sadeghian R, Fereidoni M, Khodabandehloo F. Different effects of scopolamine on learning, memory, and nitric oxide metabolite levels in hippocampal tissues of ovariectomized and Sham-operated rats. Arq Neuropsiquiatr. 2012 Jun;70(6):447-52. doi: 10.1590/s0004-282x2012000600012. PMID: 22699543. DOI: https://doi.org/10.1590/S0004-282X2012000600012
Lamberty Y, Margineanu DG, Klitgaard H. Absence of negative impact of levetiracetam on cognitive function and memory in normal and amygdala-kindled rats. Epilepsy Behav. 2000 Oct;1(5):333-42. doi: 10.1006/ebeh.2000.0098. PMID: 12609164. DOI: https://doi.org/10.1006/ebeh.2000.0098
Dhande P, Gonarkar S, Sanghavi D, Pandit V. Add-on effect of levetiracetam on cognitive activity of carbamazepine and topiramate treated healthy rats. J Clin Diagn Res. 2015 Jun;9(6):FF01-4. doi: 10.7860/JCDR/2015/12654.6110. Epub 2015 Jun 1. PMID: 26266137; PMCID: PMC4525526.
Shannon HE, Love PL. Effects of antiepileptic drugs on working memory as assessed by spatial alternation performance in rats. Epilepsy Behav. 2004 Dec;5(6):857-65. doi: 10.1016/j.yebeh.2004.08.017. PMID: 15582833. DOI: https://doi.org/10.1016/j.yebeh.2004.08.017
Sarangi SC, Kakkar AK, Kumar R, Gupta YK. Effect of lamotrigine, levetiracetam & topiramate on neurobehavioural parameters & oxidative stress in comparison with valproate in rats. Indian J Med Res. 2016 Jul;144(1):104-11. doi: 10.4103/0971-5916.193296. PMID: 27834333; PMCID: PMC5116881. DOI: https://doi.org/10.4103/0971-5916.193296
Balakrishnan S, Pandhi P. Effect of nimodipine on the cognitive dysfunction induced by phenytoin and valproate in rats. Methods Find Exp Clin Pharmacol. 1997 Dec;19(10):693-7. PMID: 9542719.
Lamberty Y, Falter U, Gower AJ, Klitgaard H. Anxiolytic profile of the antiepileptic drug levetiracetam in the Vogel conflict test in the rat. Eur J Pharmacol. 2003 May 23;469(1-3):97-102. doi: 10.1016/s0014-2999(03)01724-2. PMID: 12782190. DOI: https://doi.org/10.1016/S0014-2999(03)01724-2
Wu P, Hong S, Zhong M, Guo Y, Chen H, Jiang L. Effect of sodium valproate on cognitive function and hippocampus of rats after convulsive status epilepticus. Med Sci Monit. 2016 Dec 29;22:5197-205. doi: 10.12659/msm.898859. PMID: 28033307; PMCID: PMC5218388. DOI: https://doi.org/10.12659/MSM.898859
Preece NE, Houseman J, King MD, Weller RO, Williams SR. Development of vigabatrin-induced lesions in the rat brain studied by magnetic resonance imaging, histology, and immunocytochemistry. Synapse. 2004 Jul;53(1):36-43. doi: 10.1002/syn.20038. PMID: 15150739. DOI: https://doi.org/10.1002/syn.20038
Demirci H, Kuzucu P, Seymen CM, Gülbahar Ö, Özişik P, Emmez H. The effect of antiepileptic drugs on re-myelinization of axons: phenytoin, levetiracetam, carbamazepine, and valproic acid, used following traumatic brain injury. Clin Neurol Neurosurg. 2021 Oct;209:106911. doi: 10.1016/j.clineuro.2021.106911. Epub 2021 Aug 31. PMID: 34509750. DOI: https://doi.org/10.1016/j.clineuro.2021.106911
Downloads
- 68 52
Published
Issue
Section
How to Cite
License
Copyright (c) 2025 Mehmet Azizoğlu, Tevhide Serap Karasalihoğlu, Çetin Hakan Karadağ, Yasemin Karal, Melike Sapmaz Metin
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.