Evaluation of carotid artery Doppler measurements in late-onset fetal growth restriction: a cross-sectional study

Doppler measurements in fetal growth restriction

Authors

Keywords:

carotid artery, Doppler measurements, fetal growth restriction, umbilical artery

Abstract

Background/Aim: It has been reported that both the internal carotid artery (ICA) and the common carotid artery (CCA) are associated with hypoxia, also observed in late-onset fetal growth restriction (FGR). However, it has not yet been investigated whether these Doppler measurements differ in cases of late-onset FGR. This study evaluated the ICA and the CCA Doppler parameters in late-onset FGR fetuses and compared these measurements with those of healthy fetuses.

Methods: This cross-sectional observational study comprised 75 singleton pregnancies diagnosed with late-onset FGR between the 32nd and 37th weeks of gestation, alongside 75 healthy fetuses paired 1:1 based on obstetric history and gestational age between June 2022 and May 2023. The Delphi consensus of 2016 was used for the definition of late-onset FGR. The exclusion criteria were congenital anomalies, presence of any additional disease, maternal body mass index over 35 kg/m2, abdominal scars hindering ultrasound visualization, use of medications such as antenatal steroids, sympathomimetics, and indomethacin that affect vascular function, drug use, smoking during pregnancy, concurrent preeclampsia, and multiple pregnancies. Upon the patients' admission to the hospital, their demographic characteristics were documented, and ultrasonographic examinations and Doppler measurements were subsequently performed. The Doppler velocimetry of the umbilical artery (UA) encompassed measurements of the systolic to diastolic ratio (S/D), pulsatility index (PI), and peak systolic velocity (PSV). The carotid artery Doppler velocimetry of the middle cerebral artery (MCA), ICA, and CCA encompassed measurements of the PI, resistance index (RI), and PSV. We assessed the diagnostic performance of Doppler measurements for late-onset FGR through receiver operating characteristic (ROC) analysis.

Results: In the late-onset FGR group, the mean UA-SD was higher (2.7 [0.6] vs. 2.5 [0.5], P=0.006), and the mean UA-PI (0.8 [0.2] vs. 0.9 [0.2], P=0.011) and mean PSV (35.6 [8.2] vs. 41.1 [7.1], P<0.001) were lower compared to the control group. In the late-onset FGR group, carotid Doppler measurements were more pronounced than UA Doppler measurements. Moreover, ICA Doppler measurements exhibited superior diagnostic performance in predicting late-onset FGR compared to other Doppler measurements (Area under the curve [AUC]=0.777, P<0.001 for ICA-PI; AUC=0.751, P<0.001 for ICA-RI; AUC=0.749, P<0.001 for ICA-PSV).

Conclusion: In fetuses with late-onset FGR, UA Doppler measurements showed minimal differences compared to healthy fetuses, but differences in carotid Doppler measurements, especially in the ICA, were more pronounced. Therefore, in the management of fetuses suspected of having late-onset FGR, a more detailed Doppler examination might be required.

Downloads

Download data is not yet available.

Author Biography

Yasemin Doğan, Department of Obstetrics and Gynecology, Maternal-Fetal Unit, Kocaeli University Faculty of Medicine, Kocaeli, Turkey

Department of Obstetrics and Gynecology, Maternal-Fetal Unit

References

ACOG Practice bulletin no. 134: fetal growth restriction. Obstet Gynecol. 2013;121:1122-33. doi: 10.1097/01.AOG.0000429658.85846.f9. DOI: https://doi.org/10.1097/01.AOG.0000429658.85846.f9

Nardozza LM, Caetano AC, Zamarian AC, Mazzola JB, Silva CP, Marcal VM, et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295:1061-77. doi: 10.1007/s00404-017-4341-9. DOI: https://doi.org/10.1007/s00404-017-4341-9

Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GRMiller SL. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Front Endocrinol (Lausanne). 2019;10:55. doi: 10.3389/fendo.2019.00055. DOI: https://doi.org/10.3389/fendo.2019.00055

Brown LD, Hay WW, Jr. Impact of placental insufficiency on fetal skeletal muscle growth. Mol Cell Endocrinol. 2016;435:69-77. doi: 10.1016/j.mce.2016.03.017. DOI: https://doi.org/10.1016/j.mce.2016.03.017

Dall'Asta A, Brunelli V, Prefumo F, Frusca T, Lees CC. Early onset fetal growth restriction. Matern Health Neonatol Perinatol. 2017;3:2. doi: 10.1186/s40748-016-0041-x. DOI: https://doi.org/10.1186/s40748-016-0041-x

Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333-9. doi: 10.1002/uog.15884. DOI: https://doi.org/10.1002/uog.15884

Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016;594:807-23. doi: 10.1113/JP271402. DOI: https://doi.org/10.1113/JP271402

Liu H, Zhang L, Luo X, Li J, Huang SQi H. Prediction of late-onset fetal growth restriction by umbilical artery velocities at 37 weeks of gestation: a cross-sectional study. BMJ Open. 2022;12:e060620. doi: 10.1136/bmjopen-2021-060620. DOI: https://doi.org/10.1136/bmjopen-2021-060620

Bahado-Singh RO, Kovanci E, Jeffres A, Oz U, Deren O, Copel J, et al. The Doppler cerebroplacental ratio and perinatal outcome in intrauterine growth restriction. Am J Obstet Gynecol. 1999;180:750-6. doi: 10.1016/s0002-9378(99)70283-8. DOI: https://doi.org/10.1016/S0002-9378(99)70283-8

Figueras F, Cruz-Martinez R, Sanz-Cortes M, Arranz A, Illa M, Botet F, et al. Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet Gynecol. 2011;38:288-94. doi: 10.1002/uog.9041. DOI: https://doi.org/10.1002/uog.9041

Cruz-Martinez R, Figueras F, Oros D, Padilla N, Meler E, Hernandez-Andrade E, et al. Cerebral blood perfusion and neurobehavioral performance in full-term small-for-gestational-age fetuses. Am J Obstet Gynecol. 2009;201:474 e471-7. doi: 10.1016/j.ajog.2009.05.028. DOI: https://doi.org/10.1016/j.ajog.2009.05.028

Şirinoğlu H, Atakır K, Özdemir S, Konal M, Mihmanlı V. Middle cerebral artery to uterine artery pulsatility index ratios in pregnancy with fetal growth restriction regarding negative perinatal outcomes. Journal of Surgery and Medicine. 2022. DOI: https://doi.org/10.28982/josam.7319

Chandra A, Li WA, Stone CR, Geng X, Ding Y. The cerebral circulation and cerebrovascular disease I: Anatomy. Brain Circ. 2017;3:45-56. doi: 10.4103/bc.bc_10_17. DOI: https://doi.org/10.4103/bc.bc_10_17

Lewis NC, Messinger L, Monteleone B, Ainslie PN. Effect of acute hypoxia on regional cerebral blood flow: effect of sympathetic nerve activity. J Appl Physiol (1985). 2014;116:1189-96. doi: 10.1152/japplphysiol.00114.2014. DOI: https://doi.org/10.1152/japplphysiol.00114.2014

Das KK, Yendigeri SM, Patil BS, Bagoji IB, Reddy RC, Bagali S, et al. Subchronic hypoxia pretreatment on brain pathophysiology in unilateral common carotid artery occluded albino rats. Indian J Pharmacol. 2018;50:185-91. doi: 10.4103/ijp.IJP_312_17. DOI: https://doi.org/10.4103/ijp.IJP_312_17

Adedo AA, Arogundade RA, Okunowo AA, Idowu BM, Oduola-Owoo LT. Comparative Study of the Umbilical Artery Doppler Indices of Healthy and Growth-Restricted Foetuses in Lagos. J West Afr Coll Surg. 2022;12:63-9. doi: 10.4103/jwas.jwas_63_22. DOI: https://doi.org/10.4103/jwas.jwas_63_22

Kang H. Sample size determination and power analysis using the G*Power software. J Educ Eval Health Prof. 2021;18:17. doi: 10.3352/jeehp.2021.18.17. DOI: https://doi.org/10.3352/jeehp.2021.18.17

Kim HY. Statistical notes for clinical researchers: Sample size calculation 1. comparison of two independent sample means. Restor Dent Endod. 2016;41:74-8. doi: 10.5395/rde.2016.41.1.74. DOI: https://doi.org/10.5395/rde.2016.41.1.74

Reddy UM, Abuhamad AZ, Levine D, Saade GR, Fetal Imaging Workshop Invited P. Fetal imaging: executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecologists, American College of Radiology, Society for Pediatric Radiology, and Society of Radiologists in Ultrasound Fetal Imaging workshop. Obstet Gynecol. 2014;123:1070-82. doi: 10.1097/AOG.0000000000000245. DOI: https://doi.org/10.1097/AOG.0000000000000245

McCallum WD, Williams CS, Napel S, Daigle RE. Fetal blood velocity waveforms. Am J Obstet Gynecol. 1978;132:425-9. doi: 10.1016/0002-9378(78)90779-2. DOI: https://doi.org/10.1016/0002-9378(78)90779-2

Bonnevier A, Marsal K, Brodszki J, Thuring A, Kallen K. Cerebroplacental ratio as predictor of adverse perinatal outcome in the third trimester. Acta Obstet Gynecol Scand. 2021;100:497-503. doi: 10.1111/aogs.14031. DOI: https://doi.org/10.1111/aogs.14031

Wladimiroff JW, Tonge HM, Stewart PA. Doppler ultrasound assessment of cerebral blood flow in the human fetus. Br J Obstet Gynaecol. 1986;93:471-5. DOI: https://doi.org/10.1111/j.1471-0528.1986.tb07932.x

Wladimiroff JW, Noordam MJ, van den Wijngaard JA, Hop WC. Fetal internal carotid and umbilical artery blood flow velocity waveforms as a measure of fetal well-being in intrauterine growth retardation. Pediatr Res. 1988;24:609-12. doi: 10.1203/00006450-198811000-00014. DOI: https://doi.org/10.1203/00006450-198811000-00014

Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15:155-63. doi: 10.1016/j.jcm.2016.02.012. DOI: https://doi.org/10.1016/j.jcm.2016.02.012

DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837-45. DOI: https://doi.org/10.2307/2531595

Salavati N, Smies M, Ganzevoort W, Charles AK, Erwich JJ, Plosch T, et al. The Possible Role of Placental Morphometry in the Detection of Fetal Growth Restriction. Front Physiol. 2018;9:1884. doi: 10.3389/fphys.2018.01884. DOI: https://doi.org/10.3389/fphys.2018.01884

Krishna U, Bhalerao S. Placental insufficiency and fetal growth restriction. J Obstet Gynaecol India. 2011;61:505-11. doi: 10.1007/s13224-011-0092-x. DOI: https://doi.org/10.1007/s13224-011-0092-x

Necas M. Obstetric Doppler ultrasound: Are we performing it correctly? Australas J Ultrasound Med. 2016;19:6-12. doi: 10.1002/ajum.12002. DOI: https://doi.org/10.1002/ajum.12002

Maggio L, Dahlke JD, Mendez-Figueroa H, Albright CM, Chauhan SPWenstrom KD. Perinatal outcomes with normal compared with elevated umbilical artery systolic-to-diastolic ratios in fetal growth restriction. Obstet Gynecol. 2015;125:863-9. doi: 10.1097/AOG.0000000000000737. DOI: https://doi.org/10.1097/AOG.0000000000000737

Figueras F, Gratacos E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther. 2014;36:86-98. doi: 10.1159/000357592. DOI: https://doi.org/10.1159/000357592

Oros D, Figueras F, Cruz-Martinez R, Meler E, Munmany MGratacos E. Longitudinal changes in uterine, umbilical and fetal cerebral Doppler indices in late-onset small-for-gestational age fetuses. Ultrasound Obstet Gynecol. 2011;37:191-5. doi: 10.1002/uog.7738. DOI: https://doi.org/10.1002/uog.7738

Steller JG, Gumina D, Driver C, Peek E, Galan HL, Reeves S, et al. Patterns of Brain Sparing in a Fetal Growth Restriction Cohort. J Clin Med. 2022;11. doi: 10.3390/jcm11154480. DOI: https://doi.org/10.3390/jcm11154480

Tarzamni MK, Nezami N, Sobhani N, Eshraghi N, Tarzamni MTalebi Y. Nomograms of Iranian fetal middle cerebral artery Doppler waveforms and uniformity of their pattern with other populations' nomograms. BMC Pregnancy Childbirth. 2008;8:50. doi: 10.1186/1471-2393-8-50. DOI: https://doi.org/10.1186/1471-2393-8-50

Arbeille P, Maulik D, Fignon A, Stale H, Berson M, Bodard S, et al. Assessment of the fetal PO2 changes by cerebral and umbilical Doppler on lamb fetuses during acute hypoxia. Ultrasound Med Biol. 1995;21:861-70. doi: 10.1016/0301-5629(95)00025-m. DOI: https://doi.org/10.1016/0301-5629(95)00025-M

Shahinaj R, Manoku N, Kroi E, Tasha I. The value of the middle cerebral to umbilical artery Doppler ratio in the prediction of neonatal outcome in patient with preeclampsia and gestational hypertension. J Prenat Med. 2010;4:17-21.

Vollgraff Heidweiller-Schreurs CA, De Boer MA, Heymans MW, Schoonmade LJ, Bossuyt PMM, Mol BWJ, et al. Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;51:313-22. doi: 10.1002/uog.18809. DOI: https://doi.org/10.1002/uog.18809

Canas D, Herrera EA, Garcia-Herrera C, Celentano D, Krause BJ. Fetal Growth Restriction Induces Heterogeneous Effects on Vascular Biomechanical and Functional Properties in Guinea Pigs (Cavia porcellus). Front Physiol. 2017;8:144. doi: 10.3389/fphys.2017.00144. DOI: https://doi.org/10.3389/fphys.2017.00144

Llurba E, Baschat AA, Turan OM, Harding J, McCowan LM. Childhood cognitive development after fetal growth restriction. Ultrasound Obstet Gynecol. 2013;41:383-9. doi: 10.1002/uog.12388. DOI: https://doi.org/10.1002/uog.12388

Downloads

Published

2023-10-12

Issue

Section

Research Article

How to Cite

1.
Kucukbas GN, Doğan Y. Evaluation of carotid artery Doppler measurements in late-onset fetal growth restriction: a cross-sectional study: Doppler measurements in fetal growth restriction. J Surg Med [Internet]. 2023 Oct. 12 [cited 2025 Jan. 21];7(10):673-7. Available from: https://jsurgmed.com/article/view/7953