Comparison of selenium levels between diabetic patients with and without retinopathy

Selenium levels and diabetic retinopathy

Authors

Keywords:

diabetes mellitus, diabetic retinopathy, free radicals, microvascular complication, oxidative stress, selenium

Abstract

Background/Aim: Diabetic retinopathy is a common ailment that causes visual impairment among adults, and evidence suggests that oxidative stress plays a significant role in its pathogenesis. The objective of this study was to examine the potential association between selenium deficiency and an increased risk of diabetic retinopathy among individuals with type 2 diabetes mellitus.

Methods: This study was a prospective case-control study. 115 patients with a diagnosis of type 2 diabetes mellitus were included. The patients were divided into groups with and without retinopathy. No subgroups were made according to the level of retinopathy. The aim was to compare the serum selenium level of patients between groups. Therefore, other variables that may contribute to the development of retinopathy were also recorded. The duration of diabetes, medications used, and glycosylated hemoglobin levels were recorded. The retinopathy group included 47 patients, and the non-retinopathy group included 68 patients. Selenium levels were measured in plasma samples.

Results: The mean selenium level of the retinopathy group (70.11 [17.28] μg/l) was significantly lower than that of the non-retinopathy group (80.20 [19.10] μg/l) (P=0.005). The median duration of diabetes mellitus was significantly higher in the retinopathy group than in the non-retinopathy group (10 [1-25] and 6 [1-21], respectively; P=0.002). Logistic regression analyses showed that higher levels of blood selenium were independent preventive factors against the occurrence of retinopathy (OR [95% CI]: 0.965 [0.939-0. 991]). The duration of diabetes mellitus was an independent risk factor for retinopathy occurrence (OR [95% CI]: 1.131 [1.050-1.219]). One unit increase in selenium level was associated with a unit decrease in diabetic retinopathy of 0.965 (0.939-0.991).

Conclusion: Our research revealed a correlation between the duration of diabetes and the incidence of diabetic retinopathy. Furthermore, a notable difference was observed in blood selenium levels between patients with diabetic retinopathy and those without it. Specifically, patients with diabetic retinopathy had lower plasma selenium levels compared to the control group. These findings have potential implications for the treatment or prevention of diabetic retinopathy, but more research is needed to determine the efficacy of selenium supplementation for diabetic patients with or without microvascular complications. Future studies should investigate the effect of selenium deficiency on different subtypes of diabetic retinopathy and the impact of selenium supplementation in this patient population.

Downloads

Download data is not yet available.

References

IDF Diabetes Atlas 9th Edition .https://www.diabetesatlas.org (accessed on November 11, 2022)

Prokofyeva E, Zrenner E. Epidemiology of major eye diseases leading to blindness in Europe: a literature review. Ophthalmic Res. 2012;47(4):171-88. doi: 10.1159/000329603. Epub 2011 Nov 26. PMID: 22123077. DOI: https://doi.org/10.1159/000329603

Zhang L, Krzentowski G, Albert A, Lefebvre PJ. Risk of developing retinopathy in Diabetes Control and Complications Trial type 1 diabetic patients with good or poor metabolic control. Diabetes Care. 2001 Jul;24(7):1275-9. doi: 10.2337/diacare.24.7.1275. PMID: 11423515. DOI: https://doi.org/10.2337/diacare.24.7.1275

Yeh PT, Yang CM, Huang JS, Chien CT, Yang CH, Chiang YH, et al. Vitreous levels of reactive oxygen species in proliferative diabetic retinopathy. Ophthalmology. 2008 Apr;115(4):734-7.e1. doi: 10.1016/j.ophtha.2007.05.041. Epub 2008 Jan 4. PMID: 18177940. DOI: https://doi.org/10.1016/j.ophtha.2007.05.041

Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018 Jan 25;9(2):119. doi: 10.1038/s41419-017-0135-z. PMID: 29371661; PMCID: PMC5833737. DOI: https://doi.org/10.1038/s41419-017-0135-z

Heng LZ, Comyn O, Peto T, Tadros C, Ng E, Sivaprasad S, et al. Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet Med. 2013 Jun;30(6):640-50. doi: 10.1111/dme.12089. PMID: 23205608. DOI: https://doi.org/10.1111/dme.12089

Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct. 2012;2012:646354. doi: 10.1155/2012/646354. Epub 2011 Oct 2. PMID: 21977319; PMCID: PMC3184498. DOI: https://doi.org/10.1155/2012/646354

Ishida S, Usui T, Yamashiro K, Kaji Y, Ahmed E, Carrasquillo KG, Amano S, Hida T, Oguchi Y, Adamis AP. VEGF164 is proinflammatory in the diabetic retina. Invest Ophthalmol Vis Sci. 2003 May;44(5):2155-62. doi: 10.1167/iovs.02-0807. PMID: 12714656. DOI: https://doi.org/10.1167/iovs.02-0807

Aiello LP, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL 3rd, et al. Diabetic retinopathy. Diabetes Care. 1998 Jan;21(1):143-56. doi: 10.2337/diacare.21.1.143. PMID: 9538986. DOI: https://doi.org/10.2337/diacare.21.1.143

Vural P, Kabaca G, Firat RD, Degirmencioglu S. Administration of Selenium Decreases Lipid Peroxidation and Increases Vascular Endothelial Growth Factor in Streptozotocin Induced Diabetes Mellitus. Cell J. 2017 Oct;19(3):452-60. doi: 10.22074/cellj.2017.4161. Epub 2017 Aug 19. PMID: 28836407; PMCID: PMC5570410.

American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41:13-27. DOI: https://doi.org/10.2337/dc18-S002

Dhand NK, Khatkar MS. Statulator: An online statistical calculator. Sample Size Calculator for Comparing Two Independent Means. Accessed 8 November 2021 at http://statulator.com/SampleSize/ss2M.html

American Academy of Ophthalmology Retina/Vitreous Panel Preferred Practice Pattern Guidelines. Diabetic Retinopathy. San Francisco, CA: American Academy of Ophthalmology; 2016. November 2016, Accessed 8 November 2021 at http://www.aao.org/ppp

Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, et al; Vision Loss Expert Group of the Global Burden of Disease Study. Global Estimates on the Number of People Blind or Visually Impaired by Diabetic Retinopathy: A Meta-analysis From 1990 to 2010. Diabetes Care. 2016 Sep;39(9):1643-9. doi: 10.2337/dc15-2171. Erratum in: Diabetes Care. 2016 Nov;39(11):2096. PMID: 27555623. DOI: https://doi.org/10.2337/dc16-er11

Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012 Mar;35(3):556-64. doi: 10.2337/dc11-1909. Epub 2012 Feb 1. PMID: 22301125; PMCID: PMC3322721. DOI: https://doi.org/10.2337/dc11-1909

Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019 Jun 15;11(3):45-63. PMID: 31333808; PMCID: PMC6628012.

Longo-Mbenza B, Mvitu Muaka M, Masamba W, Muizila Kini L, Longo Phemba I, Kibokela Ndembe D, et al. Retinopathy in non diabetics, diabetic retinopathy and oxidative stress: a new phenotype in Central Africa? Int J Ophthalmol. 2014 Apr 18;7(2):293-301. doi: 10.3980/j.issn.2222-3959.2014.02.18. PMID: 24790873; PMCID: PMC4003085.

Kowluru RA, Koppolu P. Diabetes-induced activation of caspase-3 in retina: effect of antioxidant therapy. Free Radic Res 2002 Sep;36:993-9. DOI: https://doi.org/10.1080/1071576021000006572

Kähler W, Kuklinski B, Rühlmann C, Plötz C. Diabetes mellitus--eine mit Freien Radikalen assoziierte Erkrankung. Resultate einer adjuvanten Antioxidantiensupplementation [Diabetes mellitus--a free radical-associated disease. Results of adjuvant antioxidant supplementation]. Z Gesamte Inn Med. 1993 May;48(5):223-32. German. PMID: 8390768.

González de Vega R, García M, Fernández-Sánchez ML, González-Iglesias H, Sanz-Medel A. Protective effect of selenium supplementation following oxidative stress mediated by glucose on retinal pigment epithelium. Metallomics. 2018 Jan 24;10(1):83-92. doi: 10.1039/c7mt00209b. PMID: 29119175. DOI: https://doi.org/10.1039/C7MT00209B

Gebre-Medhin M, Ewald U, Plantin LO, Tuvemo T. Elevated serum selenium in diabetic children. Acta Paediatr Scand. 1984 Jan;73(1):109-14. doi: 10.1111/j.1651-2227.1984.tb09907.x. PMID: 6702438. DOI: https://doi.org/10.1111/j.1651-2227.1984.tb09907.x

Vaquero MP. Magnesium and trace elements in the elderly: intake, status and recommendations. J Nutr Health Aging. 2002;6(2):147-53. PMID: 12166371.

Zhu X, Hua R. Serum essential trace elements and toxic metals in Chinese diabetic retinopathy patients. Medicine (Baltimore) 2020;99:e23141. DOI: https://doi.org/10.1097/MD.0000000000023141

Hasan NA. Effects of trace elements on albumin and lipoprotein glycation in diabetic retinopathy. Saudi Med J. 2009 Oct;30(10):1263-71. PMID: 19838431.

Ulas M, Orhan C, Tuzcu M, Ozercan IH, Sahin N, Gencoglu H, et al. Anti-diabetic potential of chromium histidinate in diabetic retinopathy rats. BMC Complement Altern Med. 2015 Feb 5;15:16. doi: 10.1186/s12906-015-0537-3. PMID: 25652875; PMCID: PMC4321702. DOI: https://doi.org/10.1186/s12906-015-0537-3

Temurer Afşar Z, Ayçiçek B, Tütüncü Y, Çavdar Ü, Sennaroğlu E. Relationships between microvascular complications of diabetes mellitus and levels of macro and trace elements. Minerva Endocrinol. 2020 Jul 3. doi: 10.23736/S0391-1977.20.03139-9. Epub ahead of print. PMID: 32623842. DOI: https://doi.org/10.23736/S0391-1977.20.03139-9

Erdoğan A, Şeker ME, Kahraman SD. Evaluation of Environmental and Nutritional Aspects of Bee Pollen Samples Collected from East Black Sea Region, Turkey, via Elemental Analysis by ICP-MS. Biol Trace Elem Res. 2022 Apr 1. doi: 10.1007/s12011-022-03217-3. Epub ahead of print. PMID: 35362937. DOI: https://doi.org/10.1007/s12011-022-03217-3

Öztürk DK. Element concentrations of cultured fish in the Black Sea: selenium-mercury balance and the risk assessments for consumer health. Environ Sci Pollut Res Int. 2022 Dec;29(58):87998-8007. doi: 10.1007/s11356-022-21914-3. Epub 2022 Jul 12. PMID: 35819669. DOI: https://doi.org/10.1007/s11356-022-21914-3

Sonkar SK, Parmar KS, Ahmad MK, Sonkar GK, Gautam M. An observational study to estimate the level of essential trace elements and its implications in type 2 diabetes mellitus patients. J Family Med Prim Care. 2021 Jul;10(7):2594-9. doi: 10.4103/jfmpc.jfmpc_2395_20. Epub 2021 Jul 30. PMID: 34568141; PMCID: PMC8415681. DOI: https://doi.org/10.4103/jfmpc.jfmpc_2395_20

She C, Shang F, Cui M, Yang X, Liu N. Association between dietary antioxidants and risk for diabetic retinopathy in a Chinese population. Eye (Lond). 2021 Jul;35(7):1977-1984. doi: 10.1038/s41433-020-01208-z. Epub 2020 Oct 2. PMID: 33009517; PMCID: PMC8225784. DOI: https://doi.org/10.1038/s41433-020-01208-z

Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007 Aug 22;298(8):902-16. doi: 10.1001/jama.298.8.902. PMID: 17712074. DOI: https://doi.org/10.1001/jama.298.8.902

Wang X, Sui H, Su Y, Zhao S. Protective effects of sodium selenite on insulin secretion and diabetic retinopathy in rats with type 1 diabetes mellitus. Pak J Pharm Sci. 2021 Sep;34(5):1729-35. PMID: 34803009.

Dascalu AM, Anghelache A, Stana D, Costea AC, Nicolae VA, Tanasescu D, et al. Serum levels of copper and zinc in diabetic retinopathy: Potential new therapeutic targets (Review). Exp Ther Med. 2022 May;23(5):324. doi: 10.3892/etm.2022.11253. Epub 2022 Mar 11. PMID: 35386624; PMCID: PMC8972839. DOI: https://doi.org/10.3892/etm.2022.11253

Downloads

Published

2023-01-22

Issue

Section

Research Article

How to Cite

1.
Öztürk Kurt HP, Karagöz Özen DS, Genç İpek, Erdem M, Demirdağ MD. Comparison of selenium levels between diabetic patients with and without retinopathy: Selenium levels and diabetic retinopathy. J Surg Med [Internet]. 2023 Jan. 22 [cited 2024 May 25];7(1):58-62. Available from: https://jsurgmed.com/article/view/7673