Restorative effects of Acetobacter ghanensis on the pathogenicity of gliadin-induced modulation of tight junction-associated gene expression in intestinal epithelial cells
Impacts of Acetobacter ghanensis on the intestinal epithelial barrier
Keywords:
celiac disease, gluten, probiotic, Acetobacter ghanensis, caco-2 cellsAbstract
Background/Aim: At present, a gluten-free diet is the only efficient way to treat celiac disease (CD). The development of novel approaches to lessen or counteract the pathogenic effects of gluten remains crucial for the treatment of CD. The aim in this investigation was to examine the restorative effects of Acetobacter ghanensis as a novel probiotic against gliadin-induced modulation in the barrier integrity of an intestinal epithelial cell (IEC) model (Caco-2).
Methods: Fully differentiated Caco-2 cell monolayers were subjected to enzymatically digested gliadin with a pepsin and trypsin (PT) in the presence or absence of A. ghanensis for 90 min. The relative amounts of zonulin, zonula occludens-1 (ZO-1), claudin-1, and occludin mRNA expression were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Transepithelial electrical resistance (TEER) was evaluated to monitor the barrier integrity of cell monolayers. Statistical analyses were carried out using one- or two-way ANOVA followed by Tukey’s post-hoc analysis for multiple pairwise comparisons.
Results: A significant upregulation (4.7-fold) of zonulin was noted in the PT-gliadin treated Caco-2 cells in comparison with the untreated controls (P<0.001). Conversely, gliadin-induced zonulin expression was markedly downregulated in the Caco-2 cells following exposure to A. ghanensis in the presence of PT-gliadin (P<0.001). Furthermore, prominent decreases in the mRNA expression levels of ZO-1 (45%) and occludin (40%) were seen in the PT-gliadin exposed Caco-2 cells compared to the untreated control cells (P<0.001). PT-gliadin in the Caco-2 cells did not significantly alter the mRNA levels of claudin-1 (P=0.172). Similarly to zonulin expression, the decreasing effect of PT-gliadin on ZO-1 was completely attenuated in the PT-gliadin-administrated Caco-2 cells following exposure to A. ghanensis (P<0.001).
Conclusion: A. ghanensis restored the pathogenicity of PT-gliadin on intestinal barrier integrity.
Downloads
References
Lindfors K, Ciacci C, Kurppa K, Lundin KEA, Makharia GK, Mearin ML, et al. Coeliac disease. Nat Rev Dis Primers. 2019;5(1):3. doi: 10.1038/s41572-018-0054-z. DOI: https://doi.org/10.1038/s41572-018-0054-z
Uche-Anya E, Lebwohl B. Celiac disease: clinical update. Curr Opin Gastroenterol. 2021;37(6):619-24. doi: 10.1097/MOG.0000000000000785. DOI: https://doi.org/10.1097/MOG.0000000000000785
Jalilian M, Jalali R. Prevalence of celiac disease in children with type 1 diabetes: A review. Diabetes Metab Syndr. 2021;15(3):969-74. doi: 10.1016/j.dsx.2021.04.023. DOI: https://doi.org/10.1016/j.dsx.2021.04.023
Naveh Y, Rosenthal E, Ben-Arieh Y, Etzioni A. Celiac disease-associated alopecia in childhood. J Pediatr. 1999;134(3):362-4. doi: 10.1016/s0022-3476(99)70466-x. DOI: https://doi.org/10.1016/S0022-3476(99)70466-X
Chirdo FG, Auricchio S, Troncone R, Barone MV. The gliadin p31-43 peptide: Inducer of multiple proinflammatory effects. Int Rev Cell Mol Biol. 2021;358:165-205. doi: 10.1016/bs.ircmb.2020.10.003. DOI: https://doi.org/10.1016/bs.ircmb.2020.10.003
Falcigno L, Calvanese L, Conte M, Nanayakkara M, Barone MV, D'Auria G. Structural Perspective of Gliadin Peptides Active in Celiac Disease. Int J Mol Sci. 2020;21(23). doi: 10.3390/ijms21239301. DOI: https://doi.org/10.3390/ijms21239301
Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1-9. doi: 10.1038/s12276-018-0126-x. DOI: https://doi.org/10.1038/s12276-018-0126-x
Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135(1):194-204.e3. doi: 10.1053/j.gastro.2008.03.023. DOI: https://doi.org/10.1053/j.gastro.2008.03.023
Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A, et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. 2006;41(4):408-19. doi: 10.1080/00365520500235334. DOI: https://doi.org/10.1080/00365520500235334
Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258:25-33. doi: 10.1111/j.1749-6632.2012.06538.x. DOI: https://doi.org/10.1111/j.1749-6632.2012.06538.x
Håkansson Å, Andrén Aronsson C, Brundin C, Oscarsson E, Molin G, Agardh D. Effects of. Nutrients. 2019;11(8). doi: 10.3390/nu11081925. DOI: https://doi.org/10.3390/nu11081925
Marasco G, Cirota GG, Rossini B, Lungaro L, Di Biase AR, Colecchia A, et al. Probiotics, Prebiotics and Other Dietary Supplements for Gut Microbiota Modulation in Celiac Disease Patients. Nutrients. 2020;12(9). doi: 10.3390/nu12092674. DOI: https://doi.org/10.3390/nu12092674
Gujral N, Suh JW, Sunwoo HH. Effect of anti-gliadin IgY antibody on epithelial intestinal integrity and inflammatory response induced by gliadin. BMC Immunol. 2015;16:41. doi: 10.1186/s12865-015-0104-1. DOI: https://doi.org/10.1186/s12865-015-0104-1
Doguer C, Akalan H, Tokatlı Demirok N, Erdal B, Mete R, Bilgen T. Protective effects of Acetobacter ghanensis against gliadin toxicity in intestinal epithelial cells with immunoregulatory and gluten-digestive properties. Eur J Nutr. 2022. doi: 10.1007/s00394-022-03015-6. DOI: https://doi.org/10.1007/s00394-022-03015-6
Gulec S, Collins JF. Silencing the Menkes copper-transporting ATPase (Atp7a) gene in rat intestinal epithelial (IEC-6) cells increases iron flux via transcriptional induction of ferroportin 1 (Fpn1). J Nutr. 2014;144(1):12-9. doi: 10.3945/jn.113.183160. DOI: https://doi.org/10.3945/jn.113.183160
Gujral N, Freeman HJ, Thomson AB. Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol. 2012;18(42):6036-59. doi: 10.3748/wjg.v18.i42.6036. DOI: https://doi.org/10.3748/wjg.v18.i42.6036
Ludvigsson JF, Murray JA. Epidemiology of Celiac Disease. Gastroenterol Clin North Am. 2019;48(1):1-18. doi: 10.1016/j.gtc.2018.09.004. DOI: https://doi.org/10.1016/j.gtc.2018.09.004
Makharia GK, Singh P, Catassi C, Sanders DS, Leffler D, Ali RAR, et al. The global burden of coeliac disease: opportunities and challenges. Nat Rev Gastroenterol Hepatol. 2022;19(5):313-27. doi: 10.1038/s41575-021-00552-z. DOI: https://doi.org/10.1038/s41575-021-00552-z
Su GL, Ko CW, Bercik P, Falck-Ytter Y, Sultan S, Weizman AV, et al. AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology. 2020;159(2):697-705. doi: 10.1053/j.gastro.2020.05.059. DOI: https://doi.org/10.1053/j.gastro.2020.05.059
Seiler CL, Kiflen M, Stefanolo JP, Bai JC, Bercik P, Kelly CP, et al. Probiotics for Celiac Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am J Gastroenterol. 2020;115(10):1584-95. doi: 10.14309/ajg.0000000000000749. DOI: https://doi.org/10.14309/ajg.0000000000000749
Cristofori F, Indrio F, Miniello VL, De Angelis M, Francavilla R. Probiotics in Celiac Disease. Nutrients. 2018;10(12). doi: 10.3390/nu10121824. DOI: https://doi.org/10.3390/nu10121824
Clemente MG, De Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut. 2003;52(2):218-23. doi: 10.1136/gut.52.2.218. DOI: https://doi.org/10.1136/gut.52.2.218
Hollon J, Puppa EL, Greenwald B, Goldberg E, Guerrerio A, Fasano A. Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients. 2015;7(3):1565-76. doi: 10.3390/nu7031565. DOI: https://doi.org/10.3390/nu7031565
Orlando A, Linsalata M, Notarnicola M, Tutino V, Russo F. Lactobacillus GG restoration of the gliadin induced epithelial barrier disruption: the role of cellular polyamines. BMC Microbiol. 2014;14:19. doi: 10.1186/1471-2180-14-19. DOI: https://doi.org/10.1186/1471-2180-14-19
Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J, Mäki M, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152(3):552-8. oi: 10.1111/j.1365-2249.2008.03635.x. DOI: https://doi.org/10.1111/j.1365-2249.2008.03635.x
Silano M, Vincentini O, Luciani A, Felli C, Caserta S, Esposito S, et al. Early tissue transglutaminase-mediated response underlies K562(S)-cell gliadin-dependent agglutination. Pediatr Res. 2012;71(5):532-8. doi: 10.1038/pr.2012.4. DOI: https://doi.org/10.1038/pr.2012.4
Sander GR, Cummins AG, Henshall T, Powell BC. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett. 2005;579(21):4851-5. doi: 10.1016/j.febslet.2005.07.066. DOI: https://doi.org/10.1016/j.febslet.2005.07.066
Orlando A, Linsalata M, Bianco G, Notarnicola M, D'Attoma B, Scavo MP, et al. GG Protects the Epithelial Barrier of Wistar Rats from the Pepsin-Trypsin-Digested Gliadin (PTG)-Induced Enteropathy. Nutrients. 2018;10(11). doi: 10.3390/nu10111698. DOI: https://doi.org/10.3390/nu10111698
Bhat MI, Sowmya K, Kapila S, Kapila R. Potential Probiotic Lactobacillus rhamnosus (MTCC-5897) Inhibits Escherichia coli Impaired Intestinal Barrier Function by Modulating the Host Tight Junction Gene Response. Probiotics Antimicrob Proteins. 2020;12(3):1149-60. doi: 10.1007/s12602-019-09608-8. DOI: https://doi.org/10.1007/s12602-019-09608-8
Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 2010;10:316. doi: 10.1186/1471-2180-10-316. DOI: https://doi.org/10.1186/1471-2180-10-316
Herrán AR, Pérez-Andrés J, Caminero A, Nistal E, Vivas S, Ruiz de Morales JM, et al. Gluten-degrading bacteria are present in the human small intestine of healthy volunteers and celiac patients. Res Microbiol. 2017;168(7):673-84. doi: 10.1016/j.resmic.2017.04.008. DOI: https://doi.org/10.1016/j.resmic.2017.04.008
Greco L, Gobbetti M, Auricchio R, Di Mase R, Landolfo F, Paparo F, et al. Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Hepatol. 2011;9(1):24-9. doi: 10.1016/j.cgh.2010.09.025. DOI: https://doi.org/10.1016/j.cgh.2010.09.025
Francavilla R, De Angelis M, Rizzello CG, Cavallo N, Dal Bello F, Gobbetti M. Selected Probiotic Lactobacilli Have the Capacity to Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion. Appl Environ Microbiol. 2017;83(14). doi: 10.1128/AEM.00376-17. DOI: https://doi.org/10.1128/AEM.00376-17
Downloads
- 288 406
Published
Issue
Section
How to Cite
License
Copyright (c) 2023 Caglar Doguer, Nazan Tokatlı Demirok, Kardelen Busra Ege Gunduz
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.