Anti-inflammatory and anti-apoptotic potential of beta-glucan on chemotherapy-induced nephrotoxicity in rats

β-glucan on cyclophosphamide-induced nephrotoxicity

Authors

Keywords:

β-glucan, nephrotoxicity, oxidative stress, caspase-3, TNF-α

Abstract

Background/Aim: Cyclophosphamide (CP) is an anti-cancer agent that mediates nephrotoxicity. Beta (β)-glucan has restorative effects on kidney toxicities through its antioxidant potential; however, the effects of β-glucan on CP-induced renal injury remain unknown. In an experimental nephrotoxicity model using rats, we sought to examine the potential protective action of β-glucan on kidney histomorphology, apoptosis, and TNF-α expression.

Methods: Male albino Wistar rats were divided equally into four groups: control, CP, β-glucan, and CP+β-glucan. The kidney tissues of the rats were examined for TNF-α and caspase-3 immunostaining to evaluate inflammation and apoptosis, respectively. Hematoxylin and eosin (H&E) and periodic acid–Schiff (PAS) staining were used for histopathological analyses.

Results: The CP group showed severe histopathological damage in the renal tissues of rats.

In the renal tissue of the CP group, immunoreactivities for TNF-α (1.25 [0.079] and caspase-3 (1.506 [0.143] were also higher than the control group (0.117 [0.006] and 0.116 [0.002], respectively; P<0.001). In the CP+β-glucan group, the histopathological changes significantly improved.

Conclusion: Beta-glucan has therapeutic potential against CP-induced nephrotoxicity in rat kidney.

Downloads

Download data is not yet available.

References

Caglayan C, Temel Y, Kandemir FM, Yildirim S, Kucukler S. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ Sci Pollut Res Int. 2018;25(21):20968-84. DOI: https://doi.org/10.1007/s11356-018-2242-5

Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. 2016;78(4):661-71. DOI: https://doi.org/10.1007/s00280-016-3152-1

Jiang X, Ren Z, Zhao B, Zhou S, Ying X, Tang Y. Ameliorating effect of pentadecapeptide derived from Cyclina sinensis on cyclophosphamide-induced nephrotoxicity. Mar Drugs. 2020;18(9):462. DOI: https://doi.org/10.3390/md18090462

Zhang Y, Chang J, Gao H, Qu X, Zhai J, Tao L, et al. Huaiqihuang (HQH) granule alleviates cyclophosphamide-induced nephrotoxicity via suppressing the MAPK/NF-κB pathway and NLRP3 inflammasome activation. Pharm Biol. 2021;59(1):1425-31. DOI: https://doi.org/10.1080/13880209.2021.1990356

El-Shabrawy M, Mishriki A, Attia H, Emad Aboulhoda B, Emam M, Wanas H. Protective effect of tolvaptan against cyclophosphamide-induced nephrotoxicity in rat models. Pharmacol Res Perspect. 2020;8(5):e00659.

Ayza MA, Rajkapoor B, Wondafrash DZ, Berhe AH. Protective effect of Croton macrostachyus (Euphorbiaceae) stem bark on cyclophosphamide-induced nephrotoxicity in rats. J Exp Pharmacol. 2020;12:275-83. DOI: https://doi.org/10.2147/JEP.S260731

Wanas H, El-Shabrawy M, Mishriki A, Attia H, Emam M, Aboulhoda BE. Nebivolol protects against cyclophosphamide-induced nephrotoxicity through modulation of oxidative stress, inflammation, and apoptosis. Clin Exp Pharmacol Physiol. 2021;48(5):811-9. DOI: https://doi.org/10.1111/1440-1681.13481

Salama RM, Nasr MM, Abdelhakeem JI, Roshdy OK, ElGamal MA. Alogliptin attenuates cyclophosphamide-induced nephrotoxicity: a novel therapeutic approach through modulating MAP3K/JNK/SMAD3 signaling cascade. Drug Chem Toxicol. 2022;45(3):1254-63. DOI: https://doi.org/10.1080/01480545.2020.1814319

Mombeini MA, Kalantar H, Sadeghi E, Goudarzi M, Khalili H, Kalantar M. Protective effects of berberine as a natural antioxidant and anti-inflammatory agent against nephrotoxicity induced by cyclophosphamide in mice. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(2):187-94. DOI: https://doi.org/10.1007/s00210-021-02182-3

Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, et al. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci. 2015;143(2):242-55. DOI: https://doi.org/10.1093/toxsci/kfu233

Nakashima A, Yamada K, Iwata O, Sugimoto R, Atsuji K, Ogawa T, et al. β-Glucan in Foods and Its Physiological Functions. J Nutr Sci Vitaminol (Tokyo). 2018;64(1):8-17. DOI: https://doi.org/10.3177/jnsv.64.8

Du B, Lin C, Bian Z, Xu B. An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Science & Technology, 2015;41(1):49-59.

Kofuji K, Aoki A, Tsubaki K, Konishi M, Isobe T, Murata Y. Antioxidant Activity of β-Glucan. ISRN Pharm. 2012;2012:125864. DOI: https://doi.org/10.5402/2012/125864

Chan GC, Chan WK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25. DOI: https://doi.org/10.1186/1756-8722-2-25

van Steenwijk HP, Bast A, de Boer A. Immunomodulating effects of fungal Beta-glucans: From traditional use to medicine. Nutrients. 2021;13(4):1333. DOI: https://doi.org/10.3390/nu13041333

Shaki F, Pourahmad J. Mitochondrial toxicity of depleted uranium: protection by Beta-glucan. Iran J Pharm Res. 2013;12(1):131-40.

Sener G, Toklu HZ, Cetinel S. β-Glucan protects against chronic nicotine-induced oxidative damage in rat kidney and bladder. Environ Toxicol Pharmacol. 2007;23(1):25-32. DOI: https://doi.org/10.1016/j.etap.2006.06.003

Esrefoglu M, Tok OE, Aydin MS, Iraz M, Ozer OF, Selek S, et al. Effects of beta-glucan on protection of young and aged rats from renal ischemia and reperfusion injury. Bratisl Lek Listy. 2016;117(9):530-8. DOI: https://doi.org/10.4149/BLL_2016_105

Vielhauer V, Mayadas TN. Functions of TNF and its receptors in renal disease: distinct roles in inflammatory tissue injury and immune regulation. Semin Nephrol. 2007;27(3):286-308. DOI: https://doi.org/10.1016/j.semnephrol.2007.02.004

Shi H, Yu Y, Lin D, Zheng P, Zhang P, Hu M, et al. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome. 2020;8(1):143. DOI: https://doi.org/10.1186/s40168-020-00920-y

Ye MB, Bak JP, An CS, Jin HL, Kim JM, Kweon HJ, et al. Dietary β-glucan regulates the levels of inflammatory factors, inflammatory cytokines, and immunoglobulins in interleukin-10 knockout mice. J Med Food. 2011;14(5):468-74. DOI: https://doi.org/10.1089/jmf.2010.1197

Sener G, Ekşioğlu-Demiralp E, Cetiner M, Ercan F, Yeğen BC. Beta-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effect. Eur J Pharmacol. 2006;542(1-3):170-8. DOI: https://doi.org/10.1016/j.ejphar.2006.02.056

Yalçın A, Gürel A. Theraupeutic potency of benfotiamine against methotrexate-induced kidney injury and irisin immunoreactivity. Journal of Ankara Health Sciences (JAHS). 2020;9(2):244-53.

Ferguson MA, Vaidya VS, Bonventre JV. Biomarkers of nephrotoxic acute kidney injury. Toxicology. 2008;245(3):182-93. DOI: https://doi.org/10.1016/j.tox.2007.12.024

Yalçın A, Keleş H, Kahraman T, Bozkurt MF, Aydın H. Protective effects of ellagic acid against chemotherapy-induced hepatotoxicity. Duzce Medical Journal. 2020;22(2):124-30. DOI: https://doi.org/10.18678/dtfd.748816

El-Shabrawy M, Mishriki A, Attia H, Emad Aboulhoda B, Emam M, Wanas H. Protective effect of tolvaptan against cyclophosphamide-induced nephrotoxicity in rat models. Pharmacol Res Perspect. 2020;8(5):e00659. DOI: https://doi.org/10.1002/prp2.659

Ayza MA, Zewdie KA, Yigzaw EF, Ayele SG, Tesfaye BA, Tafere GG, et al. Potential protective effects of antioxidants against cyclophosphamide-induced nephrotoxicity. Int J Nephrol. 2022;2022:5096825. DOI: https://doi.org/10.1155/2022/5096825

Stankiewicz A, Skrzydlewska E. Protection against cyclophosphamide-induced renal oxidative stress by amifostine: the role of antioxidative mechanisms. Toxicol Mech Methods. 2003;13(4):301-8. DOI: https://doi.org/10.1080/713857191

Sharma S, Sharma P, Kulurkar P, Singh D, Kumar D, Patial V. Iridoid glycosides fraction from Picrorhiza kurroa attenuates cyclophosphamide-induced renal toxicity and peripheral neuropathy via PPAR-γ mediated inhibition of inflammation and apoptosis. Phytomedicine. 2017;36:108-17. DOI: https://doi.org/10.1016/j.phymed.2017.09.018

ALHaithloul HAS, Alotaibi MF, Bin-Jumah M, Elgebaly H, Mahmoud AM. Olea europaea leaf extract up-regulates Nrf2/ARE/HO-1 signaling and attenuates cyclophosphamide-induced oxidative stress, inflammation and apoptosis in rat kidney. Biomed Pharmacother. 2019;111:676-85. DOI: https://doi.org/10.1016/j.biopha.2018.12.112

Bashir KMI, Choi JS. Clinical and physiological perspectives of β-Glucans: The past, present, and future. Int J Mol Sci. 2017;18(9):1906. DOI: https://doi.org/10.3390/ijms18091906

Żyła E, Dziendzikowska K, Kamola D, Wilczak J, Sapierzyński R, Harasym J, et al. Anti-Inflammatory activity of oat beta-glucans in a Crohn's disease model: Time- and molar mass-dependent effects. Int J Mol Sci. 2021;22(9):4485. DOI: https://doi.org/10.3390/ijms22094485

Du B, Lin C, Bian Z, Xu B. An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Science & Technology. 2015;41(1):49-59. DOI: https://doi.org/10.1016/j.tifs.2014.09.002

Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 2000;7(3):153-63. DOI: https://doi.org/10.1016/S0928-4680(00)00053-5

Çetin E. Pretreatment with β-glucan attenuates isoprenaline-induced myocardial injury in rat. Exp Physiol. 2019;104(4):505-13. DOI: https://doi.org/10.1113/EP086739

Kim JM, Joo HG. Immunostimulatory effects of β-glucan purified from Paenibacillus polymyxa JB115 on mouse splenocytes. Korean J Physiol Pharmacol. 2012;16(4):225-30. DOI: https://doi.org/10.4196/kjpp.2012.16.4.225

Downloads

Published

2023-01-14

Issue

Section

Research Article

How to Cite

1.
Ozcan Metin T, Turk A, Yalcın A, Adanır I. Anti-inflammatory and anti-apoptotic potential of beta-glucan on chemotherapy-induced nephrotoxicity in rats: β-glucan on cyclophosphamide-induced nephrotoxicity . J Surg Med [Internet]. 2023 Jan. 14 [cited 2025 Jan. 21];7(1):35-9. Available from: https://jsurgmed.com/article/view/7459