Using multiplex PCR as a diagnostic tool to detect methicillin resistant Staphylococcus aureus

Authors

  • Sadık Akgün
  • Hakan Sezgin Sayiner

Keywords:

Staphylococcus aureus, Multiplex PCR, Methicillin resistant Staphylococcus aureus, Wound culture

Abstract

Aim: The goal of this report was to deliver the methicillin resistant Staphylococcus aureus (MRSA) reports to the clinician and prevent the treatment delays, investigating the efficacy in addition to diagnostic testing and contact isolation strategies for intensive care unit (ICU) patients with MRSA.

Methods: In this report, 320 Staphylococcus aureus strains identified as coagulase positive were cultured from hospitalized ICU patients between 2015 and 2017. Wound swabs were performed and bacteria cultures were evaluated for identification and antibiotic susceptibility testing using a culture antibiogram. Among these cultures from the swabs, MRSA was identified and subsequently screened for the MecA gene using rapid Multiplex polymerase chain reaction (PCR).

Results: MRSA was detected in 67 of 320 strains, because of oxacillin resistance was detected by working with a fully automated culture antibiogram device. In addition, MRSA positivity was detected because of the high MecA gene expression in 56 of these 67 strains using rapid multiplex PCR. 

Conclusion: With greater than 86% sensitivity, patients were able to get early treatment for MRSA due to the rapid screening analysis using Multiplex PCR. This method, as a diagnostic tool, may be of benefit in other diseases.

Downloads

Download data is not yet available.

References

Fang H, Hedin G. Rapid Screening and Identification of Methicillin-Resistant Staphylococcus aureus from Clinical Samples by Selective-Broth and Real-Time PCR Assay. J Clin Microbiol. 2003;7;2894–9.

Liu Y, Zhang J, and Ji Y. PCR-based Approaches for the Detection of Clinical Methicillin-resistant Staphylococcus aureus. Microbiol J. 2016;14(10):45-56.

Deresinski S. Methicillin-resistant Staphylococcus aureus: an evolutionary, epidemiologic, and therapeutic odyssey. Clin Infect Dis. 2005;15;40(4):562-73

Carroll KC. Rapid diagnostics for methicillin-resistant Staphylococcus aureus: current status. Mol Diagn Ther. 2008;12(1):15-24.

Green BN, Johnson CD, Egan JT, Rosenthal M. Griffith EA, Evans MW. Methicillin-resistant Staphylococcus aureus: an overview for manual therapists. J Chiropr Med. 2012 Mar;11(1):64–76.

Köck R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans J, et al. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill. 2010;41;14:15.

Lopez-Alcalde J, Mateos-Mazon M, Guevara M, Conterno LO, Sola I, Cabir Nunes S, et al. Gloves, gowns and masks for reducing the transmission of meticillin-resistant Staphylococcus aureus (MRSA) in the hospital setting. Cochrane Database Syst Rev. 2015;6(7):CD007087.

Huletsky A, Giroux R, Rossbach V, Gagnon M, Vaillancourt M, Bernier M, et al. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol. 2004;42(5):1875-84.

Bennimath VD, Gavimath CC, Kalburgi PB, Kelmani C. Amplification and Sequencing of MecA Gene From Methicillin Resistance Staphylococcus aureus. Int. J. Adv. Biotechnol. Res. 2011;2(3):310-14.

Bakthavatchalam YD, Nabarro LE, Veeraraghavan B. Evolving Rapid Methicillin-resistant Staphylococcus aureus Detection: Cover All the Bases. J Glob Infect Dis. 2017;9(1):18–22.

Lucke K, Hombach M, Hug M, Pfyffe GE. Rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) in diverse clinical specimens by the BD GeneOhm MRSA assay and comparison with culture. J Clin Microbiol. 2010;48(3):981-4.

Widen R, Healer V, Silbert S. Laboratory Evaluation of the BD MAX MRSA Assay. J Clin Microbiol. 2014;52(7):2686–8.

Abbadi S, Yousse H, Nemenqani D, Abdel-Moneim AS. Rapid Identification of Methicillin Resistant Staphylococcus aureus Using Real Time PCR. Advances in Infectious Diseases. 2013;3;44-9.

Aqel AA, Alzoubi HM, Vickers A, Pichon B, Kearns AM. Molecular epidemiology of nasal isolates of methicillin-resistant Staphylococcus aureus from Jordan. J Infect Public Health. 2015;8(1):90-7.

Hogan B, Rakotozandrindrainy R, Al-Emran H, Dekker D, Hahn A, Jaeger A, Poppert S, et al. Prevalence of nasal colonisation by methicillin-sensitive and methicillin-resistant Staphylococcus aureus among healthcare workers and students in Madagascar. BMC Infect Dis. 2016 Aug 15;16(1):420.

Khairalla AS, Wasfi R, Ashour HM. Carriage frequency, phenotypic, and genotypic characteristics of methicillin-resistant Staphylococcus aureus isolated from dental health-care personnel, patients, and environment. Sci Rep. 2017 Aug 7;7(1):7390.

Downloads

Published

2018-09-01

Issue

Section

Research Article

How to Cite

1.
Akgün S, Sayiner HS. Using multiplex PCR as a diagnostic tool to detect methicillin resistant Staphylococcus aureus. J Surg Med [Internet]. 2018 Sep. 1 [cited 2025 Jan. 21];2(3):215-7. Available from: https://jsurgmed.com/article/view/415215