Journal of Surgery and Medicine •-ISSIN=2602-2079

An overview about galectin-3 and its relationship with cardiovascular diseases

Lutfu Askin¹, Husna Sengul Askin², Okan Tanriverdi¹, Ali Gokhan Ozyildiz³, Siho Hidayet⁴

¹ Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey ² Department of Infectious Disease, Adiyaman Education and Research Hospital, Adiyaman,

Turkey ³ Department of Cardiology, Rize University Medicine Faculty, Rize, Turkey ⁴ Department of Cardiology, Inonu University, Medicine Faculty, Malatya, Turkey

ORCID ID of the author(s)

LA: 0000-0001-7768-2562 HSA: 0000-0001-9997-9447 OT: 0000-0002-3508-2048 AGČ: 0000-0003-0679-9434 SH: 0000-0002-4103-9345

Corresponding Author

Lutfu Askin Adiyaman Education and Research Hospital, Department of Cardiology, Adiyaman, Turkey E-mail: lutfuaskin23@gmail.com

Conflict of Interest No conflict of interest was declared by the authors.

Financial Disclosure The authors declared that this study has received no financial support.

> Published 2021 December 28

Copyright © 2021 The Author(s) Published by JOSAM This is an open access article distributed under the terms of the Creative Commons Attribution-NoCommercial-NoDerivatives License 4.0 (CC BY-NC-ND 4.0) where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

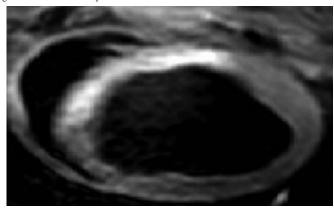
Abstract

Inflammation is one of the cornerstones of atherosclerosis. Galectin-3 (Gal-3) acts on the stages of the inflammatory process. Gal-3 is a candidate for being a valuable marker for heart failure (HF) and coronary artery disease (CAD). Further studies are needed for the diagnosis and follow-up of CAD. In the literature, the relationship between Gal-3 and CAD has not been researched sufficiently. We aimed to write a review by referring to recent studies about Gal-3 in the etiopathogenesis of CAD, its prognostic significance, and its contribution to the treatment regimen.

Keywords: Atherosclerosis, Galectin-3, İnflammation, Heart failure, Coronary artery disease

Introduction

Inflammation is one of the cornerstones of atherosclerosis and an important cause of stroke and cardiovascular disease (CVD) [1]. Galectin-3 (Gal-3), one of the soluble galactosidebinding lectins, induces phagocytosis and proliferation of vascular smooth muscle cells and accelerates atherogenesis [2]. Gal-3 is a predictor of mortality in coronary artery disease (CAD) [3]. Elevated Gal-3 expression causes the development of cardiovascular diseases. We aimed to review Gal-3's impact on CAD.


Fibroblasts, endothelial cells, neutrophils, monocytes/macrophages, dendritic cells, and inflammatory cells are involved in the release of Gal-3. Gal-3 affects inflammation stages such as neutrophil adhesion, monocyte/macrophage chemoattraction, apoptotic neutrophils opsonization, and activation of mast cells [4, 5]. It has a significant correlation with CAD, and it is an important bioxmarker to predict heart failure and CV events [6, 7].

The Gal-3 expression is low in the myocardial cells, but some pathological conditions notably upregulate this expression. Gal-3 influences the entry of macrophages into myocardial cells in hypertrophy. In the hypertrophic rat heart, Gal-3 is a potent mitogenic agent for active myocardial macrophages and fibroblasts with binding sites in the fibroblasts and extracellular matrix. This finding shows that Gal-3 acts in tissue fibrogenesis. Also, it increases the production of collagen by contributing to the differentiation of cardiac fibroblasts to myofibroblasts [5, 8, 9].

Gal-3 in heart failure (HF)

Increasing Gal-3 levels may reflect the degree of myocardial fibrosis, determined by cardiac magnetic resonance (CMR). Increased Gal-3 levels may indicate left ventricular (LV) diastolic dysfunction (Figure 1) [10, 11]. Gal-3 has recently been added to the class of useful prognostic markers as an important predictor of HF [12]. Hashmi and Al-Salam et al. reported transcriptional translational Gal-3 expression in the early stage of the ischemic left ventricular myocardium [13].

Figure 1: Galectin-3 and myocardial fibrosis

Coromilas et al. [14] demonstrate that Gal-3 can be used as a useful biomarker to assess prognosis in patients with HF with a left ventricular assist device. Gal-3 is a marker of inflammation that is not affected by acute cardiac volume or pressure increase compared to BNP. The role of Gal-3 in heart transplant follow-up may be better understood through more studies. In a cohort study, Rieth et al. [15] found a positive correlation between high Gal-3 and systolic dysfunction.

Gal-3 was highly detected in myofibroblasts as an independent determinant of myocardial fibrosis [16]. Liu et al. [17] showed that the inhibition of the transforming growth factor- β (TGF- β)/signal protein 3 (Smad3) pathway by AC-SDKP also regressed the Gal-3-activated profibrotic process and improved cardiac remodeling. Thus, the interaction of gal-3 and TGF- β /Smad3 protein signal transduction pathway proved to cause myocardial remodeling. Another study showed that suppression of Gal-3 reduces type I collagen synthesis and accumulation [18]. Decreasing Gal-3 expression effectively reduces oligomyositis fibrinolysis. In addition, Gal-3 triggers cardiac fibroblast proliferation, collagen deposition, and ventricular dysfunction [19].

The reliability of this result was confirmed after the elimination of various confounding variables affecting the prognosis in patients with normal ejection fraction (EF). Gal-3 may cause LV hypertrophy in hypertrophic cardiomyopathy (HCM) [20]. It may be useful for identifying major adverse cardiac events (MACE) in HCM.

Gal-3 in diabetes mellitus (DM)

Gal-3 levels may increase in type 2 DM [21]. Despite insufficient evidence, Gal-3 is thought to cause microvascular and macrovascular complications in type 2 DM [22]. It may be a potential biomarker for myocardial and structural lesions in patients with Type 2 DM complicated with hypertension [23]. Gal-3 was also proven to have an important role in the physiopathogenesis of diabetic nephropathy [24]. It was negatively correlated with glycosylated hemoglobin levels, and its level was significantly decreased with metformin treatment. Thus, it may play a role in the development and progression of diabetes [25].

Experiments showed that recombinant Gal-3 given exogenously may cause insulin resistance *in vitro*. Its mechanism may rely on a possible inhibition of insulin signaling by binding of gal-3 to the insulin receptor [26]. The induction of insulin resistance by gal-3 may also be related to its proinflammatory role in lipid-related metabolic disorders [27]. Pang et al. [28] claimed that gal-3 has an active role in glucose intolerance and obesity in mice.

Gal-3 in myocardial infarction (MI)

Some researchers assumed that Gal-3 has an active role in the formation of atherogenesis. Furthermore, it transports modified lipoproteins in the proinflammatory pathway in atherosclerosis [29]. Gal-3 levels may increase in MI. A higher Gal-3 was proven to be a strong predictor of MACE at 30 days follow-up [30].

Gal-3 is an essential marker for determining atherosclerotic plaque burden and stability [31]. Higher Gal-3 levels were observed in macro-calcified plaques [32]. The inhibition of gal-3 probably prevents the atherosclerotic process. The inhibition of Gal-3 may be a new therapy regimen in atherosclerosis by providing plaque stabilization [33].

Mayr et al. [34] demonstrated the relationship between post-MI left ventricular dysfunction and Gal-3. The association of Gal-3 with increased formation of oxidized low-density lipoprotein cholesterol (LDL-C) and vascular smooth muscle cell activation was demonstrated. This relationship predisposes to atherosclerotic plaque formation and MI [35].

Winter et al. [36] argued that increased Gal-3 is a potent factor for MI recurrence. Also, Aksan et al. [37] demonstrated that Gal-3 is a successful agent in determining the severity of CAD. Gleissner et al. [38] showed that increased levels of the Gal-3 binding protein (Gal-3BP) were related to long-term mortality. Based on these findings, it may be assumed that Gal-3BP levels could be a marker of inflammatory and metabolic stress rather than a reflection of coronary atherosclerotic plaque instability.

Gal-3 in atrial fibrillation (AF)

In the Framingham Heart Study (FHS), 3450 patients were followed 10 years. In a 10-year follow-up, it was observed that the incidence of AF increased with high serum Gal-3 [39]. Gal-3 value was higher in patients with AF than those with sinus rhythm [40]. Gal-3 was also correlated with AF duration and left atrial diameter [41], and significantly higher in the presence of spontaneous echo contrast (SEC) and left atrial thrombus [42].

After radiofrequency ablation, Gal-3 and left atrial diameter were independent risk factors for recurrent AF [43]. The interaction of Gal-3 with AF is thought to be via atrial remodeling and myocardial fibrosis. This mechanism could shed light on future research [44].

Gal-3 in Kawasaki disease (KD)

Numano et al. [45] found high Gal-3 in KD with a giant coronary aneurysm. Gal-3 may be a clinical marker for myocardial and vascular fibrosis in KD, with precise imaging techniques and measurement of procollagen fragments. Gal-3 therapy may provide functional improvement in myocardial cells in KD.

Conclusion

The role of Gal-3 in determining atherosclerotic plaque burden and CAD severity is still debated in the current scientific world. Increased Gal-3 levels in CAD suggest that it is part of the atherosclerotic inflammatory process. Today, Gal-3 is considered as a new marker associated with HF and other CV events according to different clinical trials. Presumably, the inhibition of Gal-3 will be useful in preventing atherosclerosis. Strategies to diminish the gal-3 function may provide a different perspective in the treatment of atherosclerotic diseases.

References

- Askin L, Tanrıverdi O. An Overview of Clinical Studies on Endocan and Cardiovascular Disease. Erciyes Med J. 2021;43(3):233-6. doi: 10.14744/etd.2020.09699.
- Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in Cardiovascular Diseases. Int J Mol Sci. 2020;21(23):9232. doi: 10.3390/ijms21239232.
- Maiolino G, Rossitto G, Pedon L, Cesari M, Frigo AC, Azzolini M, et al. Galectin-3 predicts longterm cardiovascular death in high-risk patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2015;35(3):725-32. doi: 10.1161/ATVBAHA.114.304964.
- Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev. 2009;230(1):160-71. doi: 10.1111/j.1600-065X.2009.00794.x.
- Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121-8. doi: 10.1161/01.CIR.0000147181.65298.4D.
- Kusaka H, Yamamoto E, Hirata Y, Fujisue K, Tokitsu T, Sugamura K, et al. Clinical significance of plasma galectin-3 in patients with coronary artery disease. Int J Cardiol. 2015;201:532-4. doi: 10.1016/j.ijcard.2015.08.099.
- Chen A, Hou W, Zhang Y, Chen Y, He B. Prognostic value of serum galectin-3 in patients with heart failure: a meta-analysis. Int J Cardiol. 2015;182:168-70. doi: 10.1016/j.ijcard.2014.12.137.
- Reifenberg K, Lehr HA, Torzewski M, Steige G, Wiese E, Küpper I, et al. Interferon-gamma induces chronic active myocarditis and cardiomyopathy in transgenic mice. Am J Pathol. 2007;171(2):463-72. doi: 10.2353/ajpath.2007.060906.
- Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013;6(1):107-17. doi: 10.1161/CIRCHEARTFAILURE.112.971168.
- 10.Lepojärvi ES, Piira OP, Pääkkö E, Lammentausta E, Risteli J, Miettinen JA, et al. Serum PINP, PIIINP, galectin-3, and ST2 as surrogates of myocardial fibrosis and echocardiographic left venticular diastolic filling properties. Front Physiol. 2015;6:200. doi: 10.3389/fphys.2015.00200.
- McCullough PA. Practical experience using galectin-3 in heart failure. Clin Chem Lab Med. 2014;52(10):1425-31. doi: 10.1515/cclm-2014-0278.
- 12.Meijers WC, Januzzi JL, deFilippi C, Adourian AS, Shah SJ, van Veldhuisen DJ, et al. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: a pooled analysis of 3 clinical trials. Am Heart J. 2014;167(6):853-60.e4. doi: 10.1016/j.abj.2014.02.011.
- 13.Hashmi S, Al-Salam S. Galectin-3 is expressed in the myocardium very early post-myocardial infarction. Cardiovasc Pathol. 2015;24(4):213-23. doi: 10.1016/j.carpath.2014.12.001.
- 14.Coromilas E, Que-Xu EC, Moore D, Kato TS, Wu C, Ji R, et al. Dynamics and prognostic role of galectin-3 in patients with advanced heart failure, during left ventricular assist device support and following heart transplantation. BMC Cardiovasc Disord. 2016;16:138. doi: 10.1186/s12872-016-0298-z.
- 15.Rieth AJ, Jung C, Gall H, Rolf A, Mitrovic V, Hamm CW, et al. Association of galectin-3 with changes in left ventricular function in recent-onset dilated cardiomyopathy. Biomarkers. 2019;24(7):652-658. doi: 10.1080/1354750X.2019.1642959.
- 16.Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(14):1249-56. doi: 10.1016/j.jacc.2012.04.053.
- 17.Liu YH, D'Ambrosio M, Liao TD, Peng H, Rhaleb NE, Sharma U, et al. N-acetyl-seryl-aspartyl-lysylproline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296(2):H404-12. doi: 10.1152/ajpheart.00747.2008.
- Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-Martinez E, de Boer RA, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33(1):67-75. doi: 10.1161/ATVBAHA.112.300569.
- 19.Lax A, Sanchez-Mas J, Asensio-Lopez MC, Fernandez-Del Palacio MJ, Caballero L, Garrido IP, et al. Mineralocorticoid receptor antagonists modulate galectin-3 and interleukin-33/ST2 signaling in left ventricular systolic dysfunction after acute myocardial infarction. JACC Heart Fail. 2015;3(1):50-58. doi: 10.1016/j.jchf.2014.07.015.
- 20.Yakar Tülüce S, Tülüce K, Çil Z, Emren SV, Akyıldız Zİ, Ergene O. Galectin-3 levels in patients with hypertrophic cardiomyopathy and its relationship with left ventricular mass index and function. Anatol J Cardiol. 2016;16(5):344-8. doi: 10.5152/AnatolJCardiol.2015.6191.
- 21.de Boer RA, Edelmann F, Cohen-Solal A, Mamas MA, Maisel A, Pieske B. Galectin-3 in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013;15(10):1095-101. doi: 10.1093/eurjhf/hft077.
- 22.Pugliese G, Iacobini C, Ricci C, Blasetti Fantauzzi C, Menini S. Galectin-3 in diabetic patients. Clin Chem Lab Med. 2014;52(10):1413-23. doi: 10.1515/cclm-2014-0187.
- 23.Seferovic JP, Lalic NM, Floridi F, Tesic M, Seferovic PM, Giga V, et al. Structural myocardial alterations in diabetes and hypertension: the role of galectin-3. Clin Chem Lab Med. 2014;52(10):1499-505. doi: 10.1515/cclm-2014-0265.
- 24.Tan KCB, Cheung CL, Lee ACH, Lam JKY, Wong Y, Shiu SWM. Galectin-3 is independently associated with progression of nephropathy in type 2 diabetes mellitus. Diabetologia. 2018;61(5):1212-1219. doi: 10.1007/s00125-018-4552-z.
- 25.Weigert J, Neumeier M, Wanninger J, Bauer S, Farkas S, Scherer MN, et al. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. J Clin Endocrinol Metab. 2010;95(3):1404-11. doi: 10.1210/jc.2009-1619
- 26.Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T, et al. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell. 2016;167(4):973-984.e12. doi: 10.1016/j.cell.2016.10.025.
- 27. Johnson AMF, Hou S, Li P. Inflammation and insulin resistance: New targets encourage new thinking: Galectin-3 and LTB4 are pro-inflammatory molecules that can be targeted to restore insulin sensitivity. Bioessays. 2017;39(9):10.1002/bies.201700036. doi: 10.1002/bies.201700036.

- 28.Pang J, Rhodes DH, Pini M, Akasheh RT, Castellanos KJ, Cabay RJ, et al. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice. PLoS One. 2013;8(2):e57915. doi: 10.1371/journal.pone.0057915.
- 29.Iacobini C, Menini S, Ricci C, Scipioni A, Sansoni V, Cordone S, et al. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: role of lipoxidation via receptor-mediated mechanisms. Arterioscler Thromb Vasc Biol. 2009;29(6):831-6. doi: 10.1161/ATVBAHA.109.186791.
- 30.Tsai TH, Sung PH, Chang LT, Sun CK, Yeh KH, Chung SY, et al. Value and level of galectin-3 in acute myocardial infarction patients undergoing primary percutaneous coronary intervention. J Atheroscler Thromb. 2012;19(12):1073-82. doi: 10.5551/jat.12856.
- 31.Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, et al. The predictive value of galectin-3 for mortality and cardiovascular events in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Am Heart J. 2012;164(6):878-83. doi: 10.1016/j.ahj.2012.08.021.
- 32.Falcone C, Lucibello S, Mazzucchelli I, Bozzini S, D'Angelo A, Schirinzi S, et al. Galectin-3 plasma levels and coronary artery disease: a new possible biomarker of acute coronary syndrome. Int J Immunopathol Pharmacol. 2011;24(4):905-13. doi: 10.1177/039463201102400409.
- Menini S, Iacobini C, Ricci C, Blasetti Fantauzzi C, Salvi L, Pesce CM, et al. The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis. Cardiovasc Res. 2013;100(3):472-80. doi: 10.1093/cvr/cvt206.
- 34.Mayr A, Klug G, Mair J, Streil K, Harrasser B, Feistritzer HJ, et al. Galectin-3: relation to infarct scar and left ventricular function after myocardial infarction. Int J Cardiol. 2013;163(3):335-337. doi: 10.1016/j.ijcard.2012.06.087.
- 35.Gao Z, Liu Z, Wang R, Zheng Y, Li H, Yang L. Galectin-3 Is a Potential Mediator for Atherosclerosis. J Immunol Res. 2020;2020;5284728. doi: 10.1155/2020/5284728.
- 36.Winter MP, Wiesbauer F, Alimohammadi A, Blessberger H, Pavo N, Schillinger M, et al. Soluble galectin-3 is associated with premature myocardial infarction. Eur J Clin Invest. 2016;46(5):386-91. doi: 10.1111/eci.12605.
- 37.Aksan G, Gedikli Ö, Keskin K, Nar G, İnci S, Yıldız SS, et al. Is galectin-3 a biomarker, a player-or both-in the presence of coronary atherosclerosis? J Investig Med. 2016;64(3):764-70. doi: 10.1136/jim-2015-000041.
- 38.Gleissner CA, Erbel C, Linden F, Domschke G, Akhavanpoor M, Doesch AO, et al. Galectin-3 binding protein plasma levels are associated with long-term mortality in coronary artery disease independent of plaque morphology. Atherosclerosis. 2016;251:94-100. doi: 10.1016/j.atherosclerosis.2016.06.002.
- 39.Ho JE, Yin X, Levy D, Vasan RS, Magnani JW, Ellinor PT, et al. Galectin 3 and incident atrial fibrillation in the community. Am Heart J. 2014;167(5):729-34.e1. doi: 10.1016/j.ahj.2014.02.009.
- 40.Sonmez O, Ertem FU, Vatankulu MA, Erdogan E, Tasal A, Kucukbuzcu S, et al. Novel fibroinflammation markers in assessing left atrial remodeling in non-valvular atrial fibrillation. Med Sci Monit. 2014;20:463-70. doi: 10.12659/MSM.890635.
- Gurses KM, Yakin MU, Kocyigit D, Canpinar H, Evranos B, Yorgun H, et al. Effects of persistent atrial fibrillation on serum galectin-3 levels. Am J Cardiol. 2015;115(5):647-51. doi: 10.1016/j.amjcard.2014.12.021.
- 42.Kocyigit D, Gurses KM, Yalcin MU, Canpinar H, Canpolat U, Evranos B, et al. Serum galectin-3 level as a marker of thrombogenicity in atrial fibrillation. J Clin Lab Anal. 2017;31(6):22120. doi: 10.1002/jcla.22120.
- 43.Clementy N, Benhenda N, Piver E, Pierre B, Bernard A, Fauchier L, et al. Serum Galectin-3 Levels Predict Recurrences after Ablation of Atrial Fibrillation. Sci Rep. 2016;6:34357. doi: 10.1038/srep34357.
- 44.Clementy N, Piver E, Bisson A, Andre C, Bernard A, Pierre B, et al. Galectin-3 in Atrial Fibrillation: Mechanisms and Therapeutic Implications. Int J Mol Sci. 2018;19(4):976. doi: 10.3390/ijms19040976.
- 45.Numano F, Shimizu C, Jimenez-Fernandez S, Vejar M, Oharaseki T, Takahashi K, et al. Galectin-3 is a marker of myocardial and vascular fibrosis in Kawasaki disease patients with giant aneurysms. Int J Cardiol. 2015;201:429-37. doi: 10.1016/j.ijcard.2015.07.063.

This paper has been checked for language accuracy by JOSAM editors

The National Library of Medicine (NLM) citation style guide has been used in this paper.