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Abstract 

 

Background/Aim: Sepsis is a major cause of morbidity, mortality, and healthcare utilization among 

children all over the world. Sepsis, characterized as life-threatening organ failure, results from a 

dysregulated host response to infection. When combined with critically low blood pressure, it causes septic 

shock, resulting in high mortality  rates. The aim of this study was to perform a bioinformatic analysis of 

gene expression profiles to predict  septic shock risk. 

Methods: Four datasets related to pediatric septic shock were retrieved from the Gene Expression 

Omnibus (GEO) database for a total of 240 patients and 83 controls. GEO2R tools based on R were used 

to find differentially expressed genes (DEGs). The Database for Annotation, Visualization and Integrated 

Discovery (DAVID) was used to examine the functional enrichment of DEGs. STRING was used to create 

a protein–protein interaction (PPI) network. After separately analyzing the four datasets, commonly 

affected genes were removed using the Venny program. Finally, human umbilical vein endothelial cells 

(HUVECs) were stimulated with supernatants of lipopolysaccharide (LPS)-stimulated RAW267.4 

macrophage cells and expression of selected genes was confirmed by real-time reverse-transcriptase 

polymerase chain reaction (qRT-PCR) and used to construct an in vitro septic shock model. 

Results: Seven-hundred seventy-one common differentially expressed genes in the four  groups were 

found. Of these, 433 genes showed increased expression, while 338 had reduced expression. In the 

DAVID analysis results, DEGs up-regulated according to gene ontology results were enriched in the 

regulation of innate and adaptive immune responses, complement receptor-mediated signaling, and 

cytokine secretion processes. Down-regulated DEGs were  significantly enriched in the regulation of 

immune response, T-cell activation, antigen processing, and presentation and integral component of 

plasma membrane processes. According to The Search Tool for the Retrieval of Interacting Genes/Proteins 

(STRING), Cystoscape Molecular Complex Detection (MCODE), nine down-regulated genes in the center 

of the PPI network, ZAP70, ITK, LAT, PRKCQ, LCK, IL2RB, FYN, CD8A, CD247 and four up-

regulated genes, MMP9, TIMP1, LCN2, HGF, were associated with septic shock. Expressions of FYN and 

MMP9 genes in the in vitro septic shock model were consistent with the bioinformatic results. 

Conclusion: Comparative bioinformatics analysis of data from four different septic shock studies was 

performed. As a result, molecular processes and important signal networks and 13 genes that we think will 

play a role in the development and risk prediction of septic shock are proposed. 

 

Keywords: Pediatric sepsis, Septic shock, Bioinformatics, Hub gene, Biomarker, Differentially expressed 

genes 
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Introduction 

Sepsis is a major  cause of morbidity, mortality, and 

healthcare utilization among children all over the world. 

Globally, 22 pediatric sepsis cases occur per 100,000 people 

annually, and 2,202 neonatal sepsis cases occur per 100,000 live 

births. This number is equivalent to 1.2 million pediatric cases 

annually [1]. Sepsis is defined as a life-threatening disease that 

causes septic shock and organ dysfunction by producing a 

systemic inflammatory response. Despite breakthroughs in 

antibiotic treatment, immunotherapy, and resuscitative 

treatments, sepsis remains the leading cause of mortality in 

critical care units [2, 3]. Despite many studies in the field of 

sepsis treatment in past years, studies directly targeting sepsis, 

those addressing treatments to ensure amelioration, and 

preclinical studies have not been promising. Generally, the 

current strategy chosen for sepsis treatment involves targeting 

the infective pathogen in sepsis rather than patient response. 

Therapeutic choices for sepsis are limited because the 

responsible pathogenic mechanisms are still not fully understood 

[4]. Septic shock is a homogeneous disease without a single 

cause but rather enters a broad heterogeneous disease 

classification that includes subclasses of several diseases. The 

subclass definitions of septic shock are clinically significant as 

they may have clear effects for design of potentially targeted 

treatments [5]. Studies were performed concerning  the 

subclassifications of patients with septic shock using biological 

markers found  in serum. Considering the complexity of septic 

shock, definitions of new biomarkers in biological terms is very 

important [6]. 

Microarray analysis is a broad-scope technique that can 

analyze all identified transcripts concurrently instead of 

analyzing single gene expression. The basic aim of experiments 

involving  gene expression is to determine genes displaying 

different behaviors under different conditions and to identify a 

reliable measurement for these differentially expressed genes. 

Genome scale association studies use the integration method to 

discover new gene sets [7]. Consolidation analysis, which 

collects  information from different studies about the same topic 

to reveal guiding results about genes and pathways commonly 

targeted in disease, has more statistical power than analyses 

based on a single study. Additionally, this technique is used to 

reveal disease subtypes, predict survival, and discover  

biomarkers and treatment targets in gene expression studies [8, 

9]. 

To date, several studies about determining molecular 

signatures in pediatric septic shock patients have been 

performed. Within the scope of these studies, research has been 

performed to determine molecular signatures with  many patients 

and controls  by analyzing  studies performed involving  septic 

shock patients and healthy controls. Early diagnosis and accurate 

prognostic prediction of septic shock are very important in terms 

of successful disease  treatment. In this context, gene expression 

is considered an important tool to fill a gap in the complicated 

network of septic shock treatment [8, 10]. The aim of this study 

was to determine the common role of differentially expressed 

genes (DEGs) in pediatric sepsis, to provide specific information 

for clinical sepsis treatment in children, and to research potential 

therapeutic targets and biomarkers during sepsis development 

using comprehensive bioinformatics analyses from four different 

datasets. 

Materials and methods 

Bioinformatic analysis of microarray data: 

In our research, studies including all pediatric septic 

shock expression profiles from the publicly available functional 

genomic Gene Express (GEO) database were queried and four 

datasets (GSE26440, GSE9692, GSE26378, GSE8121) were 

used (http://www.ncbi.nlm.nih.gov/geo). The sample numbers in 

each dataset are listed:  (1) GSE26440 includes 98 cases and 32 

controls, (2) GSE9692 includes 30 cases and 15 controls, (3) 

GSE26378 includes 82 cases and 21 controls, and (4) GSE8121 

includes 30 cases and 15 controls. All profiles were based on 

GPL570 Affymetrix Human Genome U133 Plus 2.0 Array. For 

bioinformatics analysis of studies performed with blood samples 

taken from pediatric septic shock patients and control groups, the 

R-based GEO2R software 

(http://www.ncbi.nlm.nih.gov/geo/geo2r) was used. To ensure a 

balance between the discovery of statistically significant genes 

and adjusted P value calculations to obtain |log2 (Fold Chance 

(FC) |, GEO2R was used to calculate adjusted P values (adjP) 

and Benjamini–Hochberg false discovery rates. Genes with P ˂ 

0.001 and |log2FC| ≥ 1 were accepted as DEGs. Later, 

overlapping results were created from different gene lists using a 

Venn diagram (https://bioinfogp.cnb.csic.es/tools/venny/). 

Identification of DEGs: The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) is  a web-based 

gene function enrichment analysis software and is the main 

bioinformatics tool for analyzing the biological processes 

associated with  DEGs. Statistical significance for DEGs and 

gene ontologies (GO) were found using  DAVID. GO is a large 

and widely used database for categorizing gene functions into 

biological processes (BP), molecular functions (MF), and cell 

components (CC). The Kyoto Encyclopedia of Genes and 

Genomes ([KEGG]http://www.kegg.jp/) is a genome 

encyclopedia combining genomic information with more high-

grade functional information to identify enriched biological paths 

to a significant degree. Significant genes and pathways 

(increasing or decreasing) with p < 0.05 were analyzed using 

gene enrichment and KEGG pathway analyses. 

Protein–protein interaction analysis and Hub Gene 

Identification: STRING (http://string-db.org,version 11.0) is an 

online database providing information about protein–protein 

interactions (PPIs) via an analysis of  functional networks 

between two or more proteins. The highest reliability point of 0.9 

was used for interaction networks and nodes without interactions 

were removed. Cytoscape (version 3.8.2) software is an open 

access bioinformatics platform created to visualize PPI networks. 

Network analysis was performed by applying the Cystoscape 

Molecular Complex Detection (MCODE, version 1.5.1), an 

application within Cytoscape.  

Validation of microarray results 

Cell culture  

In our study, two cell lines, macrophage RAW267.4 

cells and human umbilical veil endothelial cells (HUVECs) were 

used, and the cells were obtained from the American Type 
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Culture Collection (ATCC) cell bank. RAW267.4 cells were 

cultured in Roswell Park Memorial Institute (RPMI)-1640 

medium containing 10% FBS (Hyclone) and 100 U/mL of 

penicillin and streptomycin (Gibco). HUVECs were grown in 

F12 medium (Gibco), which contained 15% FBS, antibiotics, 

and 30 g/mL EGFS (Sigma). Cell counts were performed on a 

thoma slide using trypan blue to seed 1x105 viable cells in each 

well before seeding into plates.  

Cell viability assay: The cell viability of RAW264.7 

cells after stimulation was determined using the tetrazolium  

(MTT) test. MTT dye was dissolved in RPMI 1640 medium to  a 

final concentration of 2 mg/ml. After discarding the medium on 

the cells, 20 µl of MTT solution and 100 µl of medium were 

added to each well in a 96-well plate and incubated at 37 °C for 

1 h in a CO2 incubator. Absorbance was measured at 550 and 

690 nm using a spectrophotometer.  

In vitro septic shock cell model: The septic shock cell 

model consisted of two steps. In the first step, the Raw267.4 cells 

were seeded in 6- and 96-well plates and stimulated with 

10 μg/ml lipopolysaccharide (LPS) based on studies in the 

literature. The cells were incubated for 4, 8, and 24 h, and the 

culture supernatant was collected at specified hours (containing 

various factors secreted by cells in response to stimulation). In 

the second step, HUVECs were seeded in 96- and 6-well plates 

at a concentration of 1 x 105 cells and incubated for one 

night.HUVEC medium was then cultured with the supernatants 

of LPS-stimulated macrophage cells and incubated for 0, 12, 24, 

and 48 h. The cells were isolated and stored at –80 oC. 

Isolation of RNA and qRT-PCR  

In the study, the expression of MMP9 and FYN genes 

was quantitatively analyzed using the real-time reverse-

transcriptase polymerase chain reaction (qRT-PCR) method. 

Trizol was used to extract total RNA from cells (Invitrogen). 

Reverse transcriptase was used to synthesize complementary 

DNA (Roche). qRT-PCR experiments were carried out using 

SYBR Green PCR Master Mix (Roche). The expression of 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA 

was used as an endogenous control for normalizing mRNA 

expression levels. Matrix metallopeptidase 9 (MMP9) with 

upregulated expression and FYN Pro-to-Oncogene, Src Family 

Tyrosine Kinase (FYN) with downregulated expression were 

chosen. Primers were used as in the references provided [11–13].  

Statistical analysis 

All results were presented as the mean standard error 

(SE) of three separate experiments. For statistical analysis, a one-

way analysis of variance (ANOVA) test or an unpaired t-test was 

used. All statistical tests were two-tailed with a P ˂ 0.001 

threshold. 

Results 

Pre-processing of microarray data  

The gene expression data for GSE26440, GSE9692, 

GSE26378, and GSE8121 were downloaded from the GEO 

general functional genomic database with the Affymetrix human 

genome U133 Plus 2.0 platform. Genes with P-value ˂ 0.001 and 

|log2FC| ≥ 1 were chosen. A large group was created, with n = 

240 patients and n = 83 controls (Figure 1). 
 

 

Figure 1: Flow diagram of the bioinformatics analyses performed in this study (SS: Septic 

Shock, C: Control). 
 

 
 

Identification of DEGs 

In GSE26440 data, a total of 1375 genes had changed, 

with 595 genes showing increased expression and 780 genes 

showing decreased expression. For GSE9692 data, 1808 genes 

were differentially expressed, 854 of which were upregulated 

and 954 of which were downregulated. For GSE26378 data, the 

expression of 1223 genes had changed, with 723 upregulated 

genes and 500 downregulated genes. For GSE8121 data, 

expression differed for 1596 genes, with 599 upregulated and 

997 downregulated genes (Table 1 and Figure 2A–B). 
 

Table 1: Genes count with differentially expressed after bioinformatics analysis for 

comparison of between groups. 
 

GEO Access 

Number 

Number of  

DEGs 

Upregulated gene  

number 

Downregulated gene  

number 

GSE26440 1375 595 780 

GSE9692 1808 854 954 

GSE26378 1223 723 500 

GSE8121 1596 599 997 
 

Figure 2: Venn diagram and volcano diagram of DEGs. A: Volcano diagram of 4 datasets. B: 

DEGs were selected with a |log2FC ≥ 1| and P ˂ 0.001 among above 4 mRNA expression 

profiling sets datasets. The 4 datasets showed an overlap of 771 genes (433 upregulated, 338 

downregulated).  
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After separately analyzing the four datasets, the 

commonly affected genes were identified using the Venny 

program. Seven-hundred seventy-one genes  changed among the 

four datasets. Of these, 433 gene showed an increase in 

expression, and 338 had a reduction in reduced expression (P ˂ 

0.001).  

GO Function and KEGG pathway analysis with 

DAVID: To better understand the functions and mechanisms of 

the DEGs identified after analysis of microarray data, GO and 

KEGG pathway analyses were completed for genes with 

increasing or decreasing expression levels. In GO analyses, 

clusters with enrichment score above 1.3 were assessed as 

significant clusters. According to this assessment, enrichment 

was observed for 27 clusters with up-regulated expression and 16 

clusters with down-regulated expression based on the GO 

analysis of genes with common changes in the four studies. 

According to GO for DAVID analysis results, DEGs were 

collected from CC, especially in plasma membrane (97 genes) 

and integral membrane components (187 genes). Significant 

enrichment for BP in innate and adaptive immune responses and 

regulation of immune response (84 genes) processes and for MF 

in transcription factor activity, sequence-specific DNA binding 

(25 genes), and ATP binding (45 genes) processes was found. 

The GO functional enrichment analysis of up-regulated and 

down-regulated DEGs is shown in Figure 3 (P < 0.001).  
 

Figure 3: GO functional enrichment analysis of downregulated DEGs (P < 0.001). The red 

and green colors represent upregulation and downregulation, respectively (BP indicates 

biological process; CC, cellular component; MF, molecular function). 

 

For the common differentiated genes obtained from the 

four datasets, KEGG pathway analysis found that upregulated 

DEGs were basically related to metabolic pathways, neutrophil 

extracellular trap formation, osteoclast differentiation, 

transcriptional mis-regulation in cancer, and complement and 

coagulation cascades pathways. Additionally, the down-

regulated DEGs revealed significant degrees of enrichment in a 

total of 10 pathways led by T-helper cells (Th) 1, 2, and 17 cell 

differentiation, hematopoietic cell lineage, T-cell receptor 

signaling pathway, and cytokine–cytokine receptor interaction 

pathways (P < 0.001) as shown in Table 2. 
 

Table 2: KEGG pathway analysis of DEGs associated with septic shock using DAVID. 
 

A. KEGG Pathways of Upregulated Genes 

Term Count P-value Genes 

hsa01100:Metabolic 

pathways 

55 0.005 CDA, GALNT14, PYGL, ENO1, OPLAH, HK3, 

SPTLC2, IMPA2, NAMPT, CA4, MAN1A1, UPP1, 

GYG1, ENTPD1, G6PD, DGAT2, ACSL1, ARG1, 

ACSL4, PGD, CHIT1, PKM, ACOX1, B3GNT5, 

ST6GALNAC3, BCAT1, B4GALT5, PFKFB2, 

PFKFB3, MGST1, ADCY3, PLD1, CYP19A1, GNS, 

PGS1, UGCG, FUT7, ALOX5, GPAT3, ATP6V1C1, 

OLAH, MGAM, GK, GALNT2, GSR, MBOAT2, 

BST1, VNN1, DHRS9, TBXAS1, ACER3, LPCAT2, 

ALPL, HPSE, GCLM 

hsa04613:Neutrophil 

extracellular trap formation 

15 0.001 CR1, ITGAM, SIGLEC9, AQP9, NCF4, C5AR1, 

FPR1, FPR2, MAPK14, MPO, TLR8, PADI4, TLR4, 

ELANE, TLR2 

hsa04380:Osteoclast 

differentiation 

14 0.001 LILRA6, SPI1, IL1R1, IFNGR1, NCF4, LILRB3, 

MAPK14, LILRA3, LILRA5, FOSL2, OSCAR, 

SOCS3, SIRPA, MAP2K6 

hsa05202:Transcriptional 

misregulation in cancer 

13 0.003 SPI1, ITGAM, BCL2A1, GADD45A, DEFA4, IL1R2, 

LMO2, MPO, MMP9, CCNA1, BCL6, CD14, ELANE 

hsa04610:Complement and 

coagulation cascades 

12 0.001 C1QB, C1QA, SERPINA1, CR1, ITGAM, SERPINB2, 

C5AR1, C3AR1, CD59, VSIG4, CD55, F5 

hsa04621:NOD-like 

receptor signaling pathway 

11 0.018 AIM2, DEFA4, NAMPT, PRKCD, CARD6, CARD16, 

NLRC4, TXN, MAPK14, TLR4, NAIP 

hsa05150:Staphylococcus 

aureus infection 

9 0.002 C1QB, C1QA, ITGAM, DEFA4, C5AR1, FPR1, 

C3AR1, FPR2, FCAR 

hsa04640:Hematopoietic 

cell lineage 

9 0.003 CSF3R, CR1, ITGAM, IL1R1, IL1R2, CD59, CD14, 

CSF2RA, CD55 

hsa04620:Toll-like receptor 

signaling pathway 

8 0.016 LY96, TLR8, CD14, MAPK14, TLR5, TLR4, 

MAP2K6, TLR2 

hsa04064:NF-kappa B 

signaling pathway 

8 0.016 BCL2A1, IL1R1, GADD45A, TRIM25, LY96, CD14, 

CFLAR, TLR4 

B. KEGG Pathways of Downregulated Genes 

Term Count P-value Genes 

hsa04658:Th1 and Th2 cell 

differentiation 

19 0.001 MAML2, NFATC2, CD3G, GATA3, CD3E, RUNX3, 

CD3D, ZAP70, HLA-DMB, LCK, IL2RB, HLA-

DPB1, STAT4, PRKCQ, CD247, HLA-DOA, HLA-

DOB, LAT, HLA-DPA1 

    

hsa04659:Th17 cell 

differentiation 

18 0.001 NFATC2, RORA, CD3G, GATA3, CD3E, CD3D, 

IL27RA, ZAP70, HLA-DMB, LCK, IL2RB, HLA-

DPB1, PRKCQ, CD247, HLA-DOA, HLA-DOB, LAT, 

HLA-DPA1 

hsa04640:Hematopoietic 

cell lineage 

17 0.001 MME, ITGA4, FLT3LG, CD3G, CD1C, CD3E, CD3D, 

CD2, HLA-DMB, CD8A, HLA-DPB1, ITGA6, HLA-

DOA, IL7R, MS4A1, HLA-DOB, HLA-DPA1 

hsa04660:T cell receptor 

signaling pathway 

14 0.001 ITK, NFATC2, CD3G, CD3E, RASGRP1, CD3D, 

ZAP70, LCK, CD8A, CD28, FYN, PRKCQ, CD247, 

LAT 

hsa04060:Cytokine-

cytokine receptor 

interaction 

13 0.002 CX3CR1, IL27RA, CCL5, IL2RB, TNFRSF17, XCL1, 

CD27, ACKR3, TNFRSF25, CCR7, CCR6, IL7R, 

CCR3 

hsa04650:Natural killer cell 

mediated cytotoxicity 

11 0.001 ZAP70, LCK, KLRC3, SH2D1A, SH2D1B, PRF1, 

NFATC2, KLRD1, FYN, CD247, LAT 

hsa04514:Cell adhesion 

molecules 

11 0.001 CD2, HLA-DMB, CD6, ITGA4, CD8A, HLA-DPB1, 

CD28, ITGA6, HLA-DOA, HLA-DOB, HLA-DPA1 

hsa04064:NF-kappa B 

signaling pathway 

9 0.001 CYLD, ZAP70, LCK, TRAF5, BLNK, BCL2, PRKCQ, 

ATM, LAT 

hsa04612:Antigen 

processing and presentation 

9 0.001 CD74, HLA-DMB, CD8A, KLRC3, HLA-DPB1, 

KLRD1, HLA-DOA, HLA-DOB, HLA-DPA1 

hsa04062:Chemokine 

signaling pathway 

9 0.011 CX3CR1, TIAM1, ITK, CCL5, XCL1, CCR7, CCR6, 

PRKACB, CCR3 
 

Protein-–protein interaction (PPI) analysis 

To research the molecular pathogenesis of septic shock, 

PPIs of the common differentiating genes were researched using 

gene expression profiling data with multiple bioinformatics 

methods, including gene enrichment analysis and PPI analysis. 

The STRING online database was used to create the PPI network 

using a total of 771 common DEGs (433 up-regulated, 338 

down-regulated), which was analyzed by choosing the high 

reliability points of 0.9 for the interaction network, and then 

transferred to Cytoscape. The PPI network for the common 

down-regulated DEGs was visualized by Cytoscape and 

identified by the MCODE macro, an important module in 

Cytoscape and MCODE score >3 was chosen. Analysis of down-

regulated genes found 149 edges and 64 key nodes. Three 

clusters with high MCODE score were investigated and hub 

genes were identified as ZAP70, ITK, LAT, PRKCQ, LCK, 

IL2RB, FYN, CD8A, CD247, CD3E, CD28, CD3D, CD3G, 

CD74, HLA-DPA1, HLA-DOA, HLA-DOB, HLA-DMB, HLA-

DPB1, CAMK4, MEF2C, and TRAC. For up-regulated genes, 

134 edges and 133 key nodes were identified. When MCODE 

classification is performed, MMP9, TIMP1, LCN2, HGF, 

PFKFB4, PFKFB2, PFKFB3, FPR1, FPR2, IL1R2, ANXA1, 

IL1RN, IRAK3, IL1R1, ENO1, PKM, and G6PD emerged as 
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hub genes (Table 3). Genes included in the first cluster with 

highest MCODE score for down-regulated genes were mostly 

associated with the T-cell receptor signaling pathways, and apart 

from this, the primary immunodeficiency, natural killer cell-

mediated cytotoxicity, hematopoietic cell lineage, and nuclear 

factor kappa beta (NF-kappa B) signaling pathways were 

involved (Table 3 and Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 3: The top significant modules in PPI networks were identified using MCODE. 
 

Genes Cluster Score Nodes Edges Node IDs 

Downre

gulated  

1 11 13 68 ZAP70, ITK, LAT, PRKCQ, LCK, 

IL2RB, FYN, CD8A, CD247, 

CD3E, CD28, CD3D, CD3G 

2 6 6 15 CD74, HLA-DPA1, HLA-DOA, 

HLA-DOB, HLA-DMB, HLA-

DPB1 

3 3 3 3 CAMK4, MEF2C, TRAC 

Upregul

ated  

 

1 3 4 5 MMP9, TIMP1, LCN2, HGF 

2 3 3 3 PFKFB4, PFKFB2, PFKFB3 

3 3 7 9 FPR1, FPR2, IL1R2, ANXA1, 

IL1RN, IRAK3, IL1R1 

4 3 3 3 ENO1, PKM, G6PD 

5 3 3 3 C1QA, C1QB, VSIG4 

6 3 3 3 PRKCD, HCK, FGR 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: PPI network’s MCODE components identified genes associated with septic shock. Modules discovered through the MCODE algorithm. A: 6 clusters obtained with upregulated 

genes. B: 3 clusters obtained with downregulated genes. 

 
 

 

Figure 5: Visualization of the PPI network and the candidate hub genes. Identification of the hub genes from the PPI network using MCC algorithm. A: PPI network of the upregulated genes 

B: PPI network of the downregulated genes. The red nodes represent genes with a high MCC sores, while the yellow nodes represent genes with a low MCC score. 
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Identification of the Hub Gene  

CytoHubba (part of Cytoscape software)was used to 

identify significant hub genes among the resulting DEGs. The 

top 10 genes in the PPI network were chosen using the MCC 

method. A of connectivity in the PPI network was then used to 

evaluate the top 10 genes for selected up- and down-regulated 

genes. Accordingly, down-regulated genes CD247, CD3E, 

CD3D, LCK, CD3G, ZAP70, CD8A, LAT, FYN, and PRKCQ 

and upregulated genes TLR4, LY96, TLR2, MAPK14, S100A9, 

S100A8, MMP9, CD14, HCK, IL1RN were prominent as hub 

genes. It is noteworthy that the genes with the highest degree 

consisted of down-regulated genes (Figure 5A and B). 

Validation of Hub Gene Expression 

Cell viability and qRT-PCR validation results 

After using an integrated bioinformatics approach, the 

resulting key genes were validated in a well-established model of 

septic shock. qRT-PCR analysis was performed for the relative 

fold change in expression. We correlated qRT-PCR analysis with 

our findings from the bioinformatics analysis and validation 

study. In the first stage of the study, RAW267.4 was stimulated 

with 10 μg/mL LPS. The same dose was chosen based on results 

from  the literature, and highest stimulation was observed in the 

24th hour. As shown in Figure 5A, stimulation of RAW267.4 

with LPS resulted in a decrease in cell viability at 24 h  (p < 

0.05). In our study, the relative cell viability began to decline in 

the 24th hour based on MTT results, and cell supernatant from 

this time was used. In the second stage, HUVEC cells were 

seeded at  1 x 105 cells/1 ml concentration on 96-well plates and 

incubated for one night. Later the 24-h culture supernatants 

collected from macrophages were stimulated for 0, 12, 24, and 

48 h. From the 48th hour, cells were observed to have a 

significant degree of numerical reduction (P < 0.001)  as shown 

in Figure 6A and B. 

In studies performed with the aim of mimicking a septic 

shock model in vitro, samples were collected from HUVEC and 

treated for 0, 12, 24, and 48 h very hour with culture supernatant 

from the stimulated macrophages. After PCR was performed 

with the aim of optimizing primers designed for MMP9, FYN, 

and GAPDH, the resulting cDNA was subject to a  qRT-PCR 

analysis.. The MMP9 cell model was up-regulated at 0 h, in other 

words, initially in the control group without application. From 

the 12th hour, gene expression began to decline, and this down-

regulation continued until the 48th hour. The MMP9 microarray 

fold ratio was 6.9 with an increase in the  qRT-PCR fold ratio of 

3.5-fold.. As cell models with changes occurring in the same 

direction as array results are usable, this verifies that  this is a 

model that can be used for drug  trials mimicking septic shock or 

for confirming microarray studies. In the FYN cell model, down-

regulation occurred starting at 0 h. The microarray fold ratio was 

–1.4, with qRT-PCR fold ratio of –2.4 at  0 h, 0.45 at the 12th 

hour, –1.6 at the 24th hour, and –1.5 at  the 48th hour. Our results 

occurred  in the same direction as the array results (Figure 7).  
 

 

 

 

 

 

 

 

 

 

 

Figure 6: Cell viability assay results A: The MTT cell proliferation test was performed with 

the aim of checking cell death. RAW 264.7 cells were stimulated with 10 μg/mL LPS at 4, 8, 

and 24 hours. B: Delivery of supernatant from stimulated RAW 267.4 cells to HUVECs and 

cell viability at different time points (0, 12, 24, and 48 hours). 

 
 

Figure 7: Relative expression of hub genes in an in vitro septic shock model. Quantitative 

real-time PCR results for validation. 
 

 
 

Discussion 

Sepsis and septic shock are leading causes of morbidity 

and mortality in intensive care units. Although the death rates 

from septic shock have improved in recent years, they still 

remain very high [14]. Many genes revealed in studies in recent 

years were  reported to be associated with septic shock mortality 

[15]. It is difficult to determine the most important candidate 

genes and pathways for prognosis at present  due to the 

complicated background of septic shock. Transcriptome studies 

revealed differences in gene expression profiles and responses 

throughout the genome [16]. With the growth of high efficiency 

transcriptomic data, it is possible to perform integrative analysis 

with multiple datasets to discover reliable candidates for 

prognosis and treatment. For this reason, we performed 

integrated analysis increasing the patient and control numbers by 

using four different datasets to determine potential 

transcriptomic markers for prognosis in pediatric septic shock 

and targeted the common genes and pathways playing roles in 

septic shock. The present study found a total of 771 differentially 

expressed genes (433 up-regulated, 338 down-regulated) in 

common in the four datasets for septic shock patients. 

 As a result of analysis, FYN and CD247 among the hub 

genes were found to be positively associated with survival in 

sepsis in studies. Additionally, meta analysis results showed that 

FYN may be beneficial for prognosis in patients and that CD247 

may differentiate patients with sepsis and systemic inflammatory 

response syndrome. RNA sequencing using a mouse septic shock 

model showed that CD247 and FYN expression levels were low 

in this model [17]. Similar to our study, studies of these genes 

found similarly low expression levels. 

Another study of pediatric and adult sepsis and septic 

shock patients identified MAPK14, FGR, RHOG, LAT, 

PRKACB, UBE2Q2, ITK, IL2RB, and CD247 as controls of hub 

genes. They also found stated irregularities between sepsis 

patients and septic shock patients, and also that especially 

expression of MAPK14, FGR and CD247 was regulated by the 
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methylation pathway. They stated that these findings were 

important to identify potential diagnostic genes associated with 

sepsis development and the inflammatory and metabolic 

response mechanisms [18]. 

Network analysis results found adaptive immunity was 

pronounced in sepsis, and  a tendency to form isolated clusters 

with genes including CD247, CD8A, ITK, LAT and LCK was at 

the  forefront [19].  

Matrix metalloproteinases (MMPs) and 

metalloproteinase tissue inhibitors (TIMPs) may be promising 

biomarkers for prognosis during sepsis development. Hoffman et 

al. observed an association between mortality in septic patients 

and high MMP9, TIMP2, and TIMP1 plasma levels and did not 

find a difference in MMP while showing significantly high 

TIMP1 levels in those who survived compared to those who did 

not.. Another study found low MMP9 levels and lower 

MMP9/TIMP1 ratio in mortally ill septic patients [20]. In our 

study, MMP9 and TIMP1 expression levels were  up-regulated in 

the septic shock group. Lipocalin-2 (LCN2) belongs to an 

evolutionarily preserved family comprising more than 20 

members characterized by the capability of binding  and 

transporting small hydrophobic molecules. Lipocalins are known 

to play a role in inflammatory diseases and cancer. Although it 

was determined to be a biomarker for cancer, no correlation with 

sepsis was found in our study. In our study, the LCN2 gene 

expression was high. It was first identified in cytoplasmic 

granules of human neutrophils [21]. It acts as an acute phase 

protein, and expression is induced by pro-inflammatory 

stimulation. The protein is included in the innate immune 

response. LCN2 and MMP9 genes are included among hub 

genes. A study of stomach cancer showed that MMP9 activity 

was up-regulated by LCN2, and both LCN2 and MMP9 were 

controlled by the NFκB pathway resulting in proliferation and 

invasion [21, 22]. In our results, the expression of both genes 

was up-regulated, leading to the notion that they are involved in 

inflammation and related to the NFκB pathway. This pathway 

can serve as a therapeutic target and will make it easier to 

identify other targets in sepsis and septic shock. as corrected. 

The expression levels of selected genes were examined 

using quantitative qRT-PCR to confirm microarray data. One 

gene with up-regulation and one with down-regulation were 

chosen, and validation was performed. The qRT-PCR results 

showed the same correlation with those obtained from the 

microarray analysis. The genes have been validated in the septic 

shock model that we created based on the literature, but more 

extensive in vitro and in vivo experiments are needed to 

understand the pathology and investigate the gene pathways. 

The PPIs  and connection numbers of up-regulated and 

down-regulated genes are important for septic shock regulation. 

Strong interactions and connection power show that these genes 

and pathways act together. Panels created for these genes may 

provide  a promising step forward  in terms of diagnosis and 

treatment of septic shock. When determining these gene groups, 

more advanced bioinformatics analyses and functional 

experiments are required.  

Limitations  

Although our study was validated in vitro, it has some 

limitations. First, the data for analysis were downloaded from 

databases, and  problems may arise  from the differences in the 

experimental environments in which these studies were carried 

out, which may have affected the results. Second, even if 

molecular experiments were partially performed for validation, 

these preliminary results need to be performed with larger 

clinical samples to confirm their accuracy . 

Conclusion  

This study shows some genes are considered to play a 

role and be important for pediatric septic shock. Although many 

genes are known to be associated with septic shock mortality, it 

is of great importance to identify important candidate genes for 

the prognosis of the disease and the pathways in which these 

genes play a role. In order to evaluate the course of the disease, 

detecting and following the changes in terms of the amount of 

mRNA or mediator in the organism according to time will open 

new treatment avenues.. For this reason, we performed integrated 

analyses with multiple general microarray datasets to determine 

potential transcriptomic markers for prognosis of pediatric septic 

shock.  
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