Comparison of component positioning in robot-assisted and conventional total hip arthroplasty

Authors

Keywords:

Total hip arthroplasty, Robotic-assisted, Component positioning

Abstract

Aim: For primary total hip arthroplasty, many authors reported that inappropriate component positioning may lead to unfavorable results and complications. In the last two decades, robotic systems were developed to improve component positioning in total hip arthroplasty. However, there are few reports in the literature concerning its efficacy. In this study, we aimed to compare the accuracy of component positioning between robot-assisted and conventional total hip arthroplasty.
Methods: In this retrospective cohort study, forty-four patients were operated using robot-assisted surgery (RAS), and 60 patients were operated using primary conventional manual arthroplasty (CMA). Measurements were done in standing orthogonal antero-posterior x-ray (AP) views to evaluate acetabular inclination, anteversion, and leg length discrepancy. Results were compared between RAS and CMA groups.
Results: The average deviation from desired acetabular inclination was 8o in the CMA group, 4.7o in the RAS group, between which the difference was statistically significant (P=0.023). Concerning acetabular inclination, 72% of the patients in the CMA group remained in the safe zone described by Lewinnek while 94% of the patients in the RAS group remained in the same safe zone. The mean deviation from desired anteversion was 6.7o in the CMA group and 5.6o in the RAS group. The difference between two groups was not significant (P=0.209). The two groups were similar in terms of leg length discrepancy (P=0.238).
Conclusion: We achieved more consistent acetabular component positioning with robot-assisted total hip arthroplasty compared with conventional total hip arthroplasty. Thus, more patients remained within Lewinnek’s safe zone in the robot-assisted surgery group.

Downloads

Download data is not yet available.

References

Patil S, Bergula A, Chen PC, Colwell CW Jr, D'Lima DD. Polyethylene wear and acetabular component orientation. J Bone Joint Surg Am. 2003;85-A Suppl 4:56-63. doi:10.2106/00004623-200300004-00007.

Sculco PK, Cottino U, Abdel MP, Sierra RJ. Avoiding Hip Instability and Limb Length Discrepancy After Total Hip Arthroplasty. Orthop Clin North Am. 2016;47:327–34. doi:10.1016/j.ocl.2015.09.006.

Forde B, Engeln K, Bedair H, Bene N, Talmo C, Nandi S. Restoring femoral offset is the most important technical factor in preventing total hip arthroplasty dislocation. J Orthop. 2018;15:131–3. doi:10.1016/j.jor.2018.01.026.

Clement ND, S. Patrick-Patel R, MacDonald D, Breusch SJ. Total hip replacement: increasing femoral offset improves functional outcome. Arch Orthop Trauma Surgery. 2016;136:1317–23. doi:10.1007/s00402-016-2527-4.

Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217–20.

Tischler EH, Orozco F, Aggarwal VK, Pacheco H, Post Z, Ong A. Does Intraoperative Fluoroscopy Improve Component Positioning in Total Hip Arthroplasty? Orthopedics. 2015;38:e1–6. doi:10.3928/01477447-20150105-52.

Takigami I, Itokazu M, Itoh Y, Matsumoto K, Yamamoto T, Shimizu K. Limb-length measurement in total hip arthroplasty using a calipers dual pin retractor. Bull NYU Hosp Jt Dis. 2008;66:107–10.

Otero JE, Fehring KA, Martin JR, Odum SM, Fehring TK. Variability of Pelvic Orientation in the Lateral Decubitus Position: Are External Alignment Guides Trustworthy? J Arthroplasty. 2018;33:3496–501. doi:10.1016/j.arth.2018.07.021.

Innmann MM, Streit MR, Kolb J, Heiland J, Parsch D, Aldinger PR, et al. Influence of surgical approach on component positioning in primary total hip arthroplasty. BMC Musculoskelet Disord. 2015;16:180. doi:10.1186/s12891-015-0623-1.

Strøm NJ, Reikerås O. Templating in uncemented THA. On accuracy and postoperative leg length discrepancy. J Orthop. 2018;15:146–50. doi:10.1016/j.jor.2018.01.038.

Callanan MC, Jarrett B, Bragdon CR, Zurakowski D, Rubash HE, Freiberg AA, et al. The John Charnley Award: Risk Factors for Cup Malpositioning: Quality Improvement Through a Joint Registry at a Tertiary Hospital. Clin Orthop Relat Res. 2011;469:319–29. doi:10.1007/s11999-010-1487-1.

Toksvig-Larsen S. Robotic surgery in hip and knee arthroplasty. Acta Orthop Scand. 2002;73:377–8. doi:10.1080/00016470216313.

Schulz AP, Seide K, Queitsch C, von Haugwitz A, Meiners J, Kienast B, et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot Comput Assist Surg. 2007;3:301–6. doi:10.1002/rcs.161.

Tarwala R, Dorr LD. Robotic assisted total hip arthroplasty using the MAKO platform. Curr Rev Musculoskelet Med. 2011;4:151–6. doi:10.1007/s12178-011-9086-7.

Domb BG, El Bitar YF, Sadik AY, Stake CE, Botser IB. Comparison of Robotic-assisted and Conventional Acetabular Cup Placement in THA: A Matched-pair Controlled Study. Clin Orthop Relat Res. 2014;472:329–36. doi:10.1007/s11999-013-3253-7.

Nawabi DH, Conditt MA, Ranawat AS, Dunbar NJ, Jones J, Banks S, et al. Haptically guided robotic technology in total hip arthroplasty: a cadaveric investigation. Proc Inst Mech Eng H. 2013;227:302–9. doi:10.1177/0954411912468540.

Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. J Bone Jt Surg. 2007;89:780–5. doi:10.2106/JBJS.F.00222.

Wan Z, Boutary M, Dorr LD. The Influence of Acetabular Component Position on Wear in Total Hip Arthroplasty. J Arthroplasty. 2008;23:51–6. doi:10.1016/j.arth.2007.06.008.

Yoder SA, Brand RA, Pedersen DR, O’Gorman TW. Total Hip Acetabular Component Position Affects Component Loosening Rates. Clin Orthop Relat Res. 1988;228:79–87. doi:10.1097/00003086-198803000-00012.

Zahar A, Rastogi A, Kendoff D. Dislocation after total hip arthroplasty. Curr Rev Musculoskelet Med. 2013;6:350–6. doi:10.1007/s12178-013-9187-6.

Dargel J, Oppermann J, Brüggemann GP, Eysel P. Luxationen nach Hüftendoprothese. Dtsch Arztebl Int. 2014;111:51-52. doi:10.3238/arztebl.2014.0884.

Daines BK, Dennis DA. The Importance of Acetabular Component Position in Total Hip Arthroplasty. Orthop Clin North Am. 2012;43:e23–34. doi:10.1016/j.ocl.2012.08.002.

Bach CM, Winter P, Nogler M, Göbel G, Wimmer C, Ogon M. No functional impairment after Robodoc total hip arthroplasty. Acta Orthop Scand. 2002;73:386–91. doi:10.1080/00016470216316.

Jacofsky DJ, Allen M. Robotics in Arthroplasty: A Comprehensive Review. J Arthroplasty. 2016;31:2353–63. doi:10.1016/j.arth.2016.05.026.

Domb B, Finley Z, Baise R, Botser I. Preliminary results of cup positioning using the mako hip system. HIP Int. 2012;22:405–78.

Redmond JM, Gupta A, Hammarstedt JE, Petrakos A, Stake CE, Domb BG. Accuracy of Component Placement in Robotic-Assisted Total Hip Arthroplasty. Orthopedics. 2016;39:193–9. doi:10.3928/01477447-20160404-06.

Domb BG, Redmond JM, Louis SS, Alden KJ, Daley RJ, LaReau JM, et al. Accuracy of Component Positioning in 1980 Total Hip Arthroplasties: A Comparative Analysis by Surgical Technique and Mode of Guidance. J Arthroplasty. 2015;30:2208–18. doi:10.1016/j.arth.2015.06.059.

Nodzo SR, Chang C-C, Carroll KM, Barlow BT, Banks SA, Padgett DE, et al. Intraoperative placement of total hip arthroplasty components with robotic-arm assisted technology correlates with postoperative implant position. Bone Joint J. 2018;100-B:1303–9. doi:10.1302/0301-620X.100B10-BJJ-2018-0201.R1.

Chen X, Xiong J, Wang P, Zhu S, Qi W, Peng H, et al. Robotic-assisted compared with conventional total hip arthroplasty: systematic review and meta-analysis. Postgrad Med J. 2018;94:335–41. doi:10.1136/postgradmedj-2017-135352.

Hepinstall MS. Robotic total hip arthroplasty. Orthop Clin North Am. 2014;45:443–56. doi:10.1016/j.ocl.2014.06.003.

Illgen RL, Bukowski BR, Abiola R, Anderson P, Chughtai M, Khlopas A, et al. Robotic-Assisted Total Hip Arthroplasty: Outcomes at Minimum Two-Year Follow-Up. Surg Technol Int. 2017;30:365–72. http://www.ncbi.nlm.nih.gov/pubmed/28537647.

El Bitar YF, Stone JC, Jackson TJ, Lindner D, Stake CE, Domb BG. Leg-Length Discrepancy After Total Hip Arthroplasty: Comparison of Robot-Assisted Posterior, Fluoroscopy-Guided Anterior, and Conventional Posterior Approaches. Am J Orthop (Belle Mead NJ). 2015;44:265–9. http://www.ncbi.nlm.nih.gov/pubmed/26046996.

Bukowski BR, Anderson P, Khlopas A, Chughtai M, Mont MA, Illgen RL. Improved Functional Outcomes with Robotic Compared with Manual Total Hip Arthroplasty. Surg Technol Int. 2016;29:303–8. http://www.ncbi.nlm.nih.gov/pubmed/27728953.

Banchetti R, Dari S, Ricciarini ME, Lup D, Carpinteri F, Catani F, et al. Comparison of conventional versus robotic-assisted total hip arthroplasty using the Mako system: An Italian retrospective study. J Heal Soc Sci. 2018;3:37–48.

Downloads

Published

2020-04-01

Issue

Section

Research Article

How to Cite

1.
Kızılay YO, Kezer M. Comparison of component positioning in robot-assisted and conventional total hip arthroplasty. J Surg Med [Internet]. 2020 Apr. 1 [cited 2024 Mar. 28];4(4):276-80. Available from: https://jsurgmed.com/article/view/656702